From: Application of fungi as biological control strategies for nematode management in horticultural crops
Fungi Name | Horticultural Crops | Affective against Nematodes | Mode of Action | References |
---|---|---|---|---|
Acremonium strictum, Trichoderma harzianum, P. lilacinus, P. marquandii, Dactylaria brochopaga (NDDb-15), Drechslerella dactyloides (NDAd-05), Duddingtonia flagrans | Tomato (Solanum lycopersicum) | Meloidogyne incognita, M. paranaensis | Possessed both egg parasitic or opportunistic and toxic properties, Use of predatory trapping and volatile organic compounds (VOCs), Activation of the phenylpropanoid pathway in the root apoplast, which is involved in defense | (Sexton and Howlett 2006; Goswami et al. 2008; Singh et al. 2019; Mei et al. 2021) |
Exophiala spp., P. chlamydosporia, Pyrenochaeta spp. | Sugar beet (Beta vulgaris) | Heterodera schachtii | Efficient in parasitizing the eggs of the nematode | (Haj Nuaima et al. 2021) |
T. harzianum | Turnip (Brassica rapa) | M. incognita | Enhanced resistance level and development in turnip | (Ibrahim et al. 2012) |
Trichoderma viride P. lilacinus | Turmeric (Curcuma longa) | M. incognita | Parasitized the nematode eggs and juveniles | (Niranjana Prabhu et al. 2018) |
Arthrobotrys dactyloides, A. oligospora | Ginger (Zingiber officinale) | M. incognita | Nematode-trapping | (Peiris et al. 2018) |
P. lilacinum, P. chlamydosporia Trichoderma spp. | Cardamom (Elettaria cardamomum) | Meloidogyne Spp. | Reduction in root-knot formation and promoted the highest yield of cardamom | (Sathyan et al. 2021) |
Verticillium chlamydosporium strains (Vc-10 and Vc-2Â M) | Celery (Apium graveolens) | M. incognita | Egg parasite | (Nyongesa 2002) |
P. chlamydosporia | Potato (Solanum tuberosum) | M. incognita, Heterodera spp., Globodera spp. | Reduction in eggs and juveniles of nematodes | (Muthulakshmi et al. 2012) |
P. lilacinus | Eggplant (Solanum melongena) | M. incognita | Parasitized the egg masses | (Mittal et al. 1995) |
Trichoderma isolates (Tvc1, Tvc2 and Thc) | Cabbage (Brassica oleracea var. capitata) | M. incognita | Effective in inhibition of egg hatching ability of root-knot nematode, egg parasite | |
T. harzianum | Pea (Pisum sativum) | M. incognita | Effective in reducing the number of galls, egg masses, and final nematode population in soil | (Brahma and Borah 2016) |
P. lilacinus, Paecilomyces spp. | Cucumber (Cucumis sativus) | M. incognita | Highest inhibition to gall formation and production of compounds affecting motility of the second stage | |
P. marquandii, Streptomyces costaricanus | Lettuce (Lactuca sativa) | M. hapla, | Reduced root galling and increased lettuce head weight | (Chen et al. 2000) |
P. lilacinus, Aspergillus niger, Pochonia chlamydosporia var. Pc-10 (Pc-10) | Carrot (Daucus carota) | M. javanica, M. incognita | Maximum reduction in galling and nematode multiplication in carrot and improves carrot quality and yield | |
Arbuscular mycorrhizal fungi (AMF, Septoglomus deserticola, Funneliformis mosseae), Vesicular Arbuscular Mycorrhizae, Pochonia halamydosporia | Pepper (Piper nigrum) | Glomus fasciculatum, Pratylenchus coffea, M. incognita | Inhibiting nematode infection, enhancing growth and fruit yield of pepper genotypes, inhibiting egg hatching of root-knot nematodes (RKN) in spice crops | |
P. chlamydosporia | Okra (Abelmoschus esculentus) | M. incognita | Suppressed the galling, egg production, and soil population | (Dhawan and Satyendra 2009) |
Trichoderma viride | Gotukola (Centella asiatica) | Meloidogyne spp. | Reduction of RKN gall formation | (Shamalie et al. 2011) |
Pichia gluilliermondii Moh10, Pachytrichospora transvaalensis Y-1240, Candida albicans Moh Y-5, Geotichum terrestre Y 2162, Glomus versiforme. | Grapes (Vitis vinifera) | M. incognita | The induction of a defense response, including the up-regulation of the class III chitinase gene VCH3, significantly reduced the number of juveniles and disease under greenhouse conditions, similarly reduced populations | |
Fusarium oxysporum strain 162 (Fo162) | Melon (Cucumis melo) | M. incognita | Reduced early root penetration of parasitic nematode | (Menjivar et al. 2011) |
Acaulospora longula, Claroideoglomus claroideum | Apple (Malus pumila) | Pratylenchus penetrans | Colonization of the roots of apple seedlings by AMF species and nematode reduction in the soil of the seedlings | |
P. lilacinus, Hirsutella rhossiliensis, Glomus mosseae | Cherry (Prunus avium) | M. javanica, Meloidogyne spp. | The highest reduction percentage in nematode population achieved and significantly suppressed the number of galls and egg masses | (Abo-Korah 2017) |
P. lilacinus, Pseudomonas fluorescens | Papaya (Carica papaya L.) | R. reniformis, M. incognita | Reduced the root population | (Rao 2008) |
T. harzianum | Guava (Psidium guajava) | M. enterolobii | Reduced the number of M. enterolobii in both soil and roots | (Jindapunnapat et al. 2013) |
P. chlamydosporia, P. lilacinum, T. harzianum, T. viride, Glomus intraradices, G. mosseae, Glomus etunicatum | Peach (Prunus persica) | M. javanica | Suppression of root-knot nematode reproduction, exhibited effectiveness by significantly reducing the number of egg masses, eggs per egg mass, and reproductive factors | |
P. lilacinum (strain AUMC 10,620), G. mosseae | Citrus (Citrus spp.) | Tylenchulus semipenetrans, Tylenchulus semipenetrans | Highest reduction percentage against citrus nematode, effectively reduced larval activity and egg hatching | |
P. marquandii, P. lilacinus | Banana (Musa acuminata) | Radopholus similis, Helicotylenchus multicinctus, | As an effective biocontrol agent, the suppression of R. similis was observed in banana and promoted banana height, leaf numbers, healthy root weight, and reduced the number of nematodes | |
P. chlamydosporia strains (Pcc10, Pcc60C and Pcc20) | Pistachio (Pistacia vera) | M. javanica | All strains infected and parasitized nematode eggs on the roots of pistachio plants to varying degrees | (Ebadi et al. 2018) |
F. verticilloids | Pomegranate (Punica granatum) | M. javanica | Culture filtrate showed the highest mortality percentage of M. javanica | (El-Qurashi et al. 2019) |
P. lilacinus, P. chlamydosporia | Gerbera (Gerbera jamesonii) | M. incognita | Significantly reduced populations of M. incognita, suppressed infection and mortality of plants | (Nagesh and Reddy 2005) |
Penicillium citrinum | Rose (Rosa hybrida) | M. javanica | Significantly decreased the viable juveniles, eggs count and increased hatching inhibition, indicating that sufficient production (unknown) happened in potato dextrosebroth | (Baazeem et al. 2022) |
P. lilacinum, H. rhossiliensis | Gladiolus grandiflorus | M. incognita | P. lilacinum parasite on M. incognita eggs and H. rhossiliensis on second-stage juvenile of nematode in G. grandiflorus | (Abokora 2021) |
P. chlamydosporia, T. harzianum | Tuberose (Polianthes tuberosa) | M. incognita | significantly decreased the incidence of root-knot nematode and increased the number of florets/spikes and spikes/plot in Tuberose (Polianthes tuberosa) | (Rao et al. 2003) |
A. niger F22 | Watermelon (Citrullus lanatus) | M. incognita | The culture filtrate exhibited high activity against M. incognita, resulting in significant mortality of second-stage juveniles (J2s) and inhibition of egg hatching due to production of oxalic acid | (Jang et al. 2016) |
A. oligospora | Spinach (Spinacea oleracea). | M. incognita | Reduced the number of root-knot nematode | Â |