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Abstract 

Ubiquitination is a vital protein post‑translational modification (PTM) prevalent in eukaryotes. This modification 
regulates multiple cellular processes through protein degradation mediated by the 26S proteasome or affecting 
protein–protein interaction and protein localization. Magnaporthe oryzae causes rice blast disease, which is one of 
the most devastating crop diseases worldwide. In M. oryzae, ubiquitination plays important roles in growth, patho‑
genicity, stress response and effector‑mediated plant‑pathogen interaction. In this review, we summarize the roles of 
ubiquitination components in the above biological processes of M. oryzae, including single‑ or multi‑subunit E3s, E2s, 
components of 26S proteasome and also deubiquitinating enzymes. The essential function of ubiquitination in plant‑
fungus interaction is also discussed. Moreover, this review presents several issues related to the ubiquitination system 
in M. oryzae, which need to be further explored in future researches.
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Background
In eukaryotes, ubiquitination is an important post-trans-
lational modification (PTM) that contributes to various 
cellular processes, including growth and biotic or abi-
otic stress responses. Ubiquitination is usually involved 
in these cellular processes through regulating protein 
stability, protein activity or protein–protein interac-
tion. Protein ubiquitination proceeds via three sequen-
tial enzymatic reactions. The first step is the activation 
of the 76-amino acid ubiquitin protein by the ubiquitin-
activating enzyme (E1) in an ATP-dependent manner. 
The activated ubiquitin is then transferred to an active 
cysteine residue of a ubiquitin-conjugating enzyme (E2) 
to form the E2-ubiquitin intermediate. Finally, a particu-
lar ubiquitin ligase (E3) recruits the targeted substrate 

protein, and catalyzes the transfer of ubiquitin from E2 
to the substrate with the formation of an isopeptide bond 
between the carboxy-terminal glycine of ubiquitin and a 
lysine residue of the target protein (Callis 2014).

Typically, E3 ubiquitin ligases are responsible for 
the specific recognition of target proteins. E3 ubiqui-
tin ligases are categorized as single-subunit E3 ligases, 
including homologous to E6-AP carboxyl terminus 
(HECT), really interesting new gene (RING) and U-box, 
and multi-subunit E3 ligases cullin (Cul)-RING ligases 
(CRLs) (Santner and Estelle 2010). Four classes of CRLs 
are further divided as sphase kinase-associated protein1-
Cul1-F-box ligases (SCFs), bricabrac-tramtrak-broad 
complex (BTB), DNA damage-binding protein (DDB) 
and anaphase-promoting complex (APC) (Hua and Vier-
stra 2011; Yu et  al. 2016). Take the SCF complex as an 
example, multi-subunit E3 ligase is assembled through a 
conserved scaffold CUL1, which further recruits a RING 
protein RBX1 (directs E2 to the SCF complex) and SKP1/
F-box proteins (work as substrate-targeting subunit) 
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(Cardozo and Pagano 2004). SKP1 mediates the linkage 
between F-box and CUL1, and this is vital for stabilizing 
the SCF complex (Hua and Vierstra 2011).

Generally, E3 ligase recruits substrates directly, while 
E2 works by binding to E3 (Ye and Rape 2009). In recent 
years, however, it is reported that in addition to acting as 
an intermediate protein, E2 also directly binds to target 
proteins and contributes to determining the specificity of 
substrate recognition. For example, PHO2, a ubiquitin-
conjugating enzyme in Arabidopsis, directly associates 
with the phosphate transporter PHO1 and negatively reg-
ulates its stability (Liu et al. 2012). Furthermore, UBC27 
and UBC32 directly interact with their target proteins 
ABI1 and PIP2;1/PIP2;2 respectively, and promote the 
ubiquitination and thereby degradation of target pro-
teins (Pan et  al. 2020; Chen et  al. 2021). These findings 
shed light on at least some of the ubiquitin-conjugating 
enzymes that participate in target recognition directly 
(Fig. 1).

E2 or E2-E3 complex also determines the synthesis of 
polyubiquitin chains. Polyubiquitin chains, including 

K11-, K27-, K48- and K63-linked chains, are produced 
according to different lysine connections between the 
two adjacent ubiquitins. K48-linked chains are often 
considered to function in proteasome-mediated protein 
degradation. However, in the past decade, scientists have 
found that all non-K63 linkages could target proteins for 
degradation (Xu et al. 2009). The synthesis of a particu-
lar polyubiquitin chain is determined by specific E2s or 
E2-E3 complexes. For example, Ubc6p, an E2 involved in 
yeast ERAD, primarily synthesizes K11 linkages (Xu et al. 
2009); the Mms2/Ubc13 complex preferentially catalyzes 
the K63-linked chains (Eddins et al. 2006). Besides linking 
to the lysine residue in target proteins, ubiquitin chains 
could link onto other amino acids, including cysteine 
(form thioester bond with glycine of ubiquitin), serine/
threonine (form oxyester bond with glycine of ubiqui-
tin) and N-terminal (form a peptide bond with glycine 
of ubiquitin) of substrate proteins (Cadwell and Coscoy 
2005; Wang et  al. 2007; Shimizu et  al. 2010). Although 
the function of ubiquitin chains might be conservative, 
up to now, most of the related results are from yeast and 
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Fig. 1 Schematic diagram depicting the process of the ubiquitin–proteasome system. First, ubiquitin is activated by E1 with the energy provided 
by ATP. Subsequently, the activated ubiquitin is transferred to an active cysteine of E2. And then, E3 catalyzes the transfer of ubiquitin from E2 to the 
substrate with the formation of an isopeptide bond between the carboxy‑terminal glycine of ubiquitin and a lysine residue of the target protein. 
In the case of RING/U‑box type E3 ligase, E2 interacts with or does not interact with substrate; whereas in the case of HECT type E3 ligase, ubiquitin 
is directly transferred to a lysine residue in a substrate protein by E3s. Finally, the ubiquitinated substrate is degraded by the 26S proteasome and 
ubiquitins are released. Ubiquitins linked to the substrates could also be removed by DUB before the degradation. E1, ubiquitin‑activating enzyme; 
E2, ubiquitin‑conjugating enzyme; E3, ubiquitin ligase; DUB, deubiquitinating enzyme
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mammal, while the synthesis and function of polyubiqui-
tin chains in pathogens are largely unclear.

Ubiquitination is a reversible course. Deubiquitinating 
enzymes (DUBs) contribute to removing ubiquitins from 
ubiquitinated proteins before their proteasomal degrada-
tion. As a result, DUB participates in different processes 
by inhibiting protein ubiquitination and subsequent deg-
radation. Ubiquitin-specific proteases (UBPs) are the 
largest family of DUBs. There are 16 UBP proteins in 
Saccharomyces cerevisiae (Wilkinson 1997) and 27 UBP 
proteins in Arabidopsis thaliana (Liu et  al. 2008). Take 
Arabidopsis UBP12/UBP13 as an example, UBP12 and 
UBP13 work redundantly in the negative regulation of 
plant innate immune responses (Ewan et al. 2011). How-
ever, UBP12/UBP13 associates with the transcription fac-
tor MYC2 in the nucleus and enhances JA response by 
stabilizing MYC2 (Jeong et al. 2017). ROOT MERISTEM 
GROWTH FACTOR (RGF) 1 is an important peptide 
hormone that modifies root growth. UBP12/UBP13 con-
tributes to maintaining the root cell sensitivity to RGF1 
through counteracting the ubiquitination and degrada-
tion of the RGF1 receptor (An et al. 2018). In the process 
of nitrogen deficiency-induced leaf senescence, UBP12/
UBP13 counteracts the function of E3 ligase Nitrogen 
Limitation Adaptation (NLA) to increase the stability of 
the transcription factor ORESARA1 (ORE1) (Park et  al. 
2019). Biochemical and genetic investigation results have 
demonstrated that deubiquitinating enzymes UBP12 
and UBP13 participate in various signaling pathways by 
reducing the ubiquitination and degradation of differ-
ent targets. More detailed knowledge about DUBs can 
be found in excellent reviews such as that by Komander 
et al. (2009) and by Mevissen and Komander (2017).

Ubiquitin-like proteins (Ubls), including small ubiq-
uitin-related modifier (SUMO), neural precursor cell-
expressed developmentally down-regulated 8 (NEDD8) 
and ubiquitin-related modifier 1 (URM1), are also uncov-
ered in eukaryotes (Hochstrasser 2000). Among them, 
SUMOylation is the best-studied Ubl modification. 
SUMOylation is also catalyzed by E1, E2 and E3, and 
attaches the C terminus of SUMO to the lysine residue 
of target proteins. Compared with ubiquitination, the 
relatively smaller SUMO system consists of a single E1, 
a single E2 and several E3s, although it plays compre-
hensive roles in the development and stress responses of 
eukaryotes. SUMOylation usually works through affect-
ing protein stability (generally improve protein stability), 
protein localization (such as nuclear-cytosolic transport) 
and protein interaction (Miura et al. 2007).

Magnaporthe oryzae is a hemibiotrophic fungus that 
causes rice blast, one of the most destructive rice diseases 
worldwide (Wilson and Talbot 2009). M. oryzae grows 
as branching hyphae and produces three-celled conidia 

on the top of the conidiophore (Wilson 2021). The first 
step of its infection process is to form appressorium after 
adhesion of conidia to the plant surface. Subsequently, a 
penetration peg is formed to pierce through host surface 
with the help of the elevated appressorial turgor pressure. 
Upon successful invasion of plant cells, invasive hyphae 
(IH) are established (Talbot 2003; Gilbert et  al. 2006). 
Defects in any step of the infection process could lead to 
the reduction or loss of pathogenicity at last.

In M. oryzae, there are 8 genes encoding ubiquitin-
activating enzymes including ubiquitin-like activat-
ing enzymes, 21 genes encoding ubiquitin-conjugating 
enzyme and 94 genes encoding E3 ligase, according to the 
protein-similarity search result using InterPro domain 
(Oh et al. 2012). However, most of these predicted genes 
in the ubiquitin system have not been verified until now. 
The microarray data shows that more predicted genes in 
the ubiquitin system (39%) are induced during conidia 
germination than the entire transcriptome (21%) (Oh 
et al. 2012), which implies that some proteins in conidia 
germination are involved in ubiquitination process. In 
addition, inhibition of ubiquitin-mediated protein deg-
radation using the 26S proteasome inhibitor remark-
ably attenuates the invasion process in a dose-dependent 
manner, from conidia germination, appressorium forma-
tion to the pathogenicity of M. oryzae (Oh et  al. 2012). 
This result demonstrates that the ubiquitin system also 
plays important roles in multiple biological processes of 
M. oryzae. Although more and more key proteins in the 
ubiquitin–proteasome system have been characterized 
in recent years, here we mainly present recent advances 
on the biological functions of ubiquitination in the devel-
opment, pathogenicity and stress responses of M. oryzae 
and also in M. oryzae-rice interaction.

Roles of the ubiquitin–proteasome system (UPS) 
in growth and pathogenicity of M. oryzae
E3 ligase
The SCF complex is a kind of multi-subunit E3 ligase. 
In M. oryzae, MoGrr1 is the first reported F-box encod-
ing gene, a core component of the SCF complex. Grr1 is 
originally identified in yeast, and MoGrr1 can comple-
ment the growth defect of grr1 mutant in yeast (Oh et al. 
2012). Targeted disruption of MoGrr1 results in abnor-
mal vegetative growth, conidial and melanin production, 
and subsequently attenuates the virulence of M. oryzae to 
host plants. Complementation experiments exhibit that 
the full-length MoGrr1, but not the deletion of the F-box 
domain, can recover the pathogenicity of ΔMogrr1. In 
detail, transformants that overexpress the F-box domain-
deleted MoGrr1 (MoGrr1 ΔF-box) in the ΔMogrr1 
mutant background exhibit a complete loss of conidia-
tion and reduced virulence, similar to the phenotypes 
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observed in the ΔMogrr1 mutant strain. Therefore, the 
whole function of MoGrr1 is required for the develop-
ment and pathogenicity of M. oryzae (Oh et al. 2012).

Recently, a study reported that MoGrr1 and another 
HECT type E3 ligase Ptr1 negatively regulate the basal 
protein level of sirtuin 2 (Sir2), an antioxidation regulator 
required for suppressing the host oxidative burst, in the 
absence of oxidative stress. Sir2 directly interacts with 
MoGrr1, and the protein level of Sir2 is accumulated in 
the ΔMogrr1 mutant, which is logical to be regarded as 
the substrate-E3 relationship (Li et  al. 2020). However, 
in the presence of oxidative stress, another HECT type 
E3 ligase Upl3, which is also critical to the virulence of 
M. oryzae, helps maintain Sir2 protein accumulation (Li 
et al. 2020). In addition, the author proved that all these 
three E3 ligases function at the post-translational level. 
Therefore, Upl3 might indirectly regulates the protein 
level of Sir2. Taken together, the differential regulation of 
Sir2 by multiple E3 ligases provides evidence that distinct 
E3 ligases can antagonistically regulate a single protein at 
different environmental conditions.

Frp1, an F-box protein in Fusarium oxysporum, is 
pivotal to the pathogenicity of F. oxysporum on tomato 
(Duyvesteijn et  al. 2005). The homologous of Frp1 is 
identified as MoFrp1 in M. oryzae. MoFrp1 interacts 
with MoSkp1, the scaffold protein in the SCF complex 
(Prakash et al. 2016). In RNAi-based MoSkp1 knockdown 
transformants, abnormal conidiogenesis-related pheno-
types are observed, such as reduced sporulation, small 
conidium, delayed spore germination, and the inability 
to form appressoria. In addition, in ΔMoskp1 mutant, 
the ubiquitination level of total protein is significantly 
reduced, which is consistent with the ubiquitination 
function of the SCF complex (Prakash et al. 2016). Based 
on these results, we can conjecture that the SCF complex 
might function in the growth and virulence of M. oryzae 
through mediating the ubiquitination of key regulators in 
these pathways. However, few substrates have been iden-
tified in M. oryzae so far.

To identify more F-box proteins that are involved in the 
pathogenicity of M. oryzae, Shi et al. (2019) screened 24 
F-box candidate proteins that interacted with MoSkp1. 
Finally, 17 F-box proteins were confirmed to interact with 
MoSkp1, exhibiting the potential to form an SCF com-
plex. In the aspect of phenotype, the author found that 
the mutants of 21 F-box protein-coding genes showed no 
difference in virulence compared with wild type. Com-
bined together, three F-box proteins, including MoFwd1, 
MoCdc4 and MoFbx15, could interact with MoSkp1 
and are required for the development and virulence of 
M. oryzae. MoFbx15 and MoCdc4 are distributed in 
the nucleus, while MoFwd1 is localized to the cytosol. 
MoFwd1 and MoCdc4 interact with MoSkp1 through the 

F-box domain, which is consistent with the interaction 
characteristics of the SCF complex. Phenotypic analysis 
showed that mutants of MoFwd1, MoCdc4 and MoFbx15 
cause virulence defects, partially due to delayed conidia 
germination and reduced appressorial formation (Shi 
et al. 2019). MoFwd1 is also involved in circadian rhythm 
through modifying the transcription and protein stabil-
ity of MoFrq, a core circadian regulator (Shi et al. 2019). 
Recent studies showed that the ubiquitination level of 
total protein in ΔMofbx15 is decreased compared with 
that of wild type, which further proved that SCF ubiqui-
tin ligases containing F-box proteins play indispensable 
roles in the development and pathogenicity of M. oryzae 
by affecting protein ubiquitination (Lim and Lee 2020).

Single-subunit E3 ligases, especially RING-type E3 
ligases, have also been identified in M. oryzae. Hrd1 is 
a key E3 ligase of the endoplasmic reticulum-associated 
degradation (ERAD) pathway, and MoHrd1 is identified 
in M. oryzae. IP-MS data to separate putative interacting 
proteins of MoHrd1 revealed that MoHrd1 is involved 
in the secretory pathway, energy synthesis and metabo-
lism (Jiang et  al. 2018). Cell biological and biochemi-
cal investigation results showed that both MoHrd1 and 
MoDer1 have conserved functions in the ERAD system, 
including ER localization, ERAD substrate degradation 
and the induction of unfolded protein response (UPR) in 
their knockout mutants. With regard to biological func-
tion, MoHrd1 and MoDer1 are involved in the growth, 
protein secretion and pathogenicity of M. oryzae (Tang 
et  al. 2020). The studies of MoHrd1 shed light on the 
essential role of ERAD in the development and virulence 
of M. oryzae. However, only a few proteins in the ERAD 
pathway have been identified so far, and the regulation 
mechanism of the ERAD system in the development and 
pathogenicity of M. oryzae is largely unknown. Other 
RING-type E3 ligases, including MoBre1, MoRad18 and 
MoUbr1, have also been characterized in M. oryzae (Shi 
et  al. 2016). Although the function of Bre1, Rad18 and 
Ubr1 in mammals and yeast are clearly uncovered, the 
specific substrates of these E3s have not been identified 
in the regulation pathway of M. oryzae.

E2 and other components in the ubiquitin–proteasome 
system
E2-conjugating enzyme, as another important compo-
nent in the ubiquitination pathway, plays an important 
role in cell signaling by influencing protein stability. 
There are 21 E2 enzymes in M. oryzae, but the corre-
sponding studies are lacking (Oh et al. 2012). MoRad6 is 
an identified ubiquitin-conjugating enzyme and is pivotal 
to the growth and development of M. oryzae (Shi et  al. 
2016). The disruption of MoRad6 leads to defects in 
growth, sporulation, conidial germination, appressorium 
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formation and infection of host plant. Similar to its 
homolog Rad6 in yeast and mammal, MoRad6 interacts 
with three RING-type E3 ligases, MoBre1, MoRad18 and 
MoUbr1, in M. oryzae. In terms of fungal growth, conid-
ial adhesion, germination and appressorium formation, 
MoRad6 functions mainly by interacting with MoUbr1, 
which is involved in protein degradation through the 
N-end rule pathway (Shi et  al. 2016). The study of 
MoRad6 suggests that E2-conjugating enzymes are also 
essential to both the development and pathogenicity of 
M. oryzae. Thus, more regulation mechanisms of E2 need 
to be uncovered in the future.

Other important components in the ubiquitin–pro-
teasome system are also identified. Targeted deletion of 
MGG_01282, a polyubiquitin-encoding gene, resulted 
in a significant reduction in the ubiquitination level of 
total protein (Oh et  al. 2012). This gene deletion leads 
to pleiotropic effects on M. oryzae, including develop-
ment and the whole invasion process. Compared with the 
wild-type strain, the MGG_01282-deleted mutant pre-
sents significant changes in fungal growth, morphology 
and development. The growth inhibition is more severe 
under nitrogen starvation treatment. As to the effect on 
pathogenicity, MGG_01282 mutant shows reduced path-
ogenicity on barely (Oh et al. 2012). The result on pheno-
type analysis of the MGG_01282-deleted mutant further 
supports that ubiquitin is essential to a lot of biological 
processes in M. oryzae, including those associated with 
vegetative growth, stress responses and pathogenicity.

Deubiquitination is an indispensable part of the ubiqui-
tin-mediated proteasome degradation system. In M. ory-
zae, the role of deubiquitinating enzymes in development 
and pathogenicity is also characterized. Deubiquitinating 
enzyme MoUbp14 is homologous to Ubp14 in S. cerevi-
siae. Deletion of Ubp14 in yeast results in the accumula-
tion of free polyubiquitin chains, in line with the expected 
function of the deubiquitinating enzyme (Wang et  al. 
2018). Targeted deletion of MoUbp14 in M. oryzae results 
in reduced sporulation, irregular appressorium forma-
tion and decreased pathogenicity on the host. According 
to the pull-down assay result, some proteins involved in 
carbohydrate metabolism and stress responses, and two 
key rate-limiting enzymes in gluconeogenesis, MoFbp1 
and MoPck1, are identified as the Ubp14-interacting 
proteins (Wang et al. 2018). The ubiquitination levels of 
MoFbp1 and MoPck1 are increased in the ΔMoubp14 
mutant; however, the protein accumulation of MoFbp1 
and MoPck1 is also elevated in the ΔMoubp14 mutant. 
The author hypothesized that MoUbp14 is responsible 
for removing ubiquitins from ubiquitinated proteins, and 
it can help in providing sufficient ubiquitin for the deg-
radation of MoFbp1 and MoPck1 (Wang et  al. 2018). It 
is also possible that the substrates of MoUbp14 are not 

so specific. For example, the E3 ligase of MoFbp1 and 
MoPck1 might also be the substrate of MoUbp14. The 
final comprehensive effect of MoUbp14 on MoFbp1 and 
MoPck1 is a reduction in their ubiquitination level but a 
promotion of their degradation.

MoUbp4 and MoUbp8 are another two deubiquitinat-
ing enzymes involved in the growth and pathogenicity 
of M. oryzae. Ubiquitination levels of total protein are 
increased in the MoUbp4- or MoUbp8-deleted mutant. 
These two genes are required for the growth and viru-
lence of M. oryzae (Que et  al. 2020; Yang et  al. 2020). 
However, the studies of MoUbp4 and MoUbp8 are 
focused on their biological functions analysis, and the 
underlying mechanism behind the phenotype is largely 
unknown.

As mentioned earlier, conidium germination and 
appressorium formation are delayed in M. oryzae by the 
proteasome inhibitor, and subsequently the virulence 
is decreased (Oh et  al. 2012). The 20S proteasome, as a 
subunit of the 26S proteasome, is important to the patho-
genicity of the M. oryzae race KJ301 by inhibition of pro-
tein turnover (Wang et al. 2011). According to the above 
summary, almost all published genes in ubiquitin-medi-
ated pathways, from ubiquitination to degradation, play 
a vital role in regulation of the growth and pathogenicity 
of M. oryzae.

Ubiquitin‑like modification in M. oryzae
Besides the ubiquitin pathway, the function of ubiquitin-
like proteins in M. oryzae is also uncovered. SUMOyla-
tion is involved in a variety of signaling pathways and 
ultimately affects multiple phenotypes of plants and 
animals. Some components of the SUMO pathway have 
been identified in M. oryzae, including SUMO Smt3, 
E1-activating enzymes Aos1 and Uba2, the E2 Ubc9 and 
the E3 ligase Siz1 (Liu et al. 2018). In M. oryzae, deletion 
of genes in the SUMOylation pathway results in multiple 
defect phenotypes throughout almost all life cycle stages, 
such as reduced growth and sporulation, abnormal 
conidium and appressorium, change in pathogenicity as 
well as cell-cycle-related phenotypes. Through analysis of 
the SUMO proteome of M. oryzae, many pathogenicity-
related proteins, including those in the mitogen-activated 
protein kinase (MAPK) signaling pathway, UPR regulated 
proteins and cell-wall-related proteins, are identified as 
SUMOylation substrates (Liu et  al. 2018). In addition, 
both cytoplasmic and apoplastic effector proteins can-
not be well secreted in SUMO mutants. The above results 
prove the importance of the SUMO pathway in the devel-
opment, stress responses and pathogenicity of M. oryzae 
(Liu et al. 2018).

The septin ring at the appressorium pore plays an 
essential role in the process of penetrating the leaf 
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surface. It composes of four core septins, Sep3, Sep4, 
Sep5 and Sep6 (Dagdas et  al. 2012). Liu et  al. found 
that all these four septin proteins can be SUMOylated. 
Mutation of the SUMOylation site results in the mislo-
calization of septin proteins. The site-targeted mutant 
also exhibits less virulence compared with the wild-type 
strain. These results demonstrate that SUMOylation is 
necessary for the integrated function of serpin proteins 
(Liu et al. 2018).

In M. oryzae P131, MoUrm1 is a ubiquitin-like protein 
involved in vegetative growth and infection (Wang et al. 
2019a). The ΔMourm1 mutant exhibit a slight reduction 
in growth rate and an evident reduction in conidia for-
mation. In addition, this mutant induces much smaller 
lesions compared with the wild-type and complemented 
strains (Wang et  al. 2019a). Taken together, ubiquitin-
like modifications are conserved in M. oryzae and play an 
important role in the development, stress responses and 
pathogenicity of M. oryzae.

Ubiquitination is required for responses 
to different stresses in M. oryzae
Various environment cues interfere with the growth and 
infection process of M. oryzae. Cell wall stress, osmotic 
stress and oxidative stress are majorly investigated in M. 
oryzae. The results of gene expression analysis showed 
that multiple genes associated with protein ubiquitina-
tion were differentially regulated during stress responses 
compared with non-treated control. Targeted disrup-
tion of MoGrr1 results in increased sensitivity to oxida-
tive and cell wall stresses. The expression levels of several 
chitin synthase-encoding genes, CHS1, CHS6 and CHS7, 
are significantly decreased in ΔMogrr1, which might be 
the reason why ΔMogrr1 is sensitive to cell wall stresses 
(Guo et  al. 2015). The integrated cell wall is essential 
to the growth and pathogenicity of M. oryzae. Mutants 
devoid of any one of several other ubiquitin–proteasome 
components in Table 1 also exhibited cell wall stress-sen-
sitive phenotype (Table 1), implying ubiquitination might 
enhance the virulence of M. oryzae through the cell wall 
integrity (CWI) pathway.

Besides cell wall stress, ubiquitination also affects nitro-
gen starvation stress. MGG_01282 is highly induced dur-
ing nitrogen starvation, leading to a significant elevation 
in protein ubiquitination level than wild type. By enrich-
ing polyubiquitinated proteins, 63 proteins (includ-
ing several proteins associated with cytoskeleton and 
stress responses) were identified in the purified samples 
but not in the negative control (Oh et  al. 2012). PUB4, 
another polyubiquitin-encoding gene, is also abundantly 
expressed during nitrogen-starvation stress and glu-
cose starvation (McCafferty and Talbot 1998). Nitrogen 
starvation could induce autophagy; therefore, whether 

ubiquitination has crosstalk with autophagy in M. oryzae 
needs further exploration.

Ubiquitination‑mediated regulation of secreted 
effectors
During infection, a pathogen secrets effectors into plant 
cells to interfere with host plant resistance by changing 
protein stability, localization or complex formation. Mul-
tiple studies showed that ubiquitination-mediated pro-
tein degradation play important role in pathogen-host 
interaction. For example, the effector AvrPtoB, an E3 
ligase from Pseudomonas syringae, promotes the degra-
dation of positive plant immunity proteins, including lec-
tin RLK LecRK-IX.2 and EXO70B1, to enhance the Pto 
DC3000 virulence (Wang et al. 2019b; Xu et al. 2020). In 
addition, LecRK-IX.2 reversely phosphorylates AvrPtoB 
to reduce its E3 ligase activity (Xu et al. 2020). In M. ory-
zae-rice interaction, the effector AvrPiz-t interacts with 
two RING-type E3 ligases, AVRPIZ-T INTERACTING 
PROTEIN 6 (APIP6) and APIP10, to suppress their ubiq-
uitin ligase activities and promote their degradation. In 
return, both APIP6 and APIP10 can ubiquitinate AvrPiz-
t and subsequently degrade it (Park et  al. 2012, 2016). 
Besides AvrPiz-t, APIP10 negatively regulates the stabil-
ity of nucleotide-binding leucine-rich repeat (NB-LRR) 
resistance protein Piz-t through the 26S-proteasome 
pathway. Thus, AvrPiz-t protects Piz-t via decreasing the 
E3 ligase activity of APIP10 during M. oryzae infection 
(Park et  al. 2016). The above studies give us a complex 
but clear relationship among AvrPiz-t, APIP10 and Piz-t.

Conclusions and future perspectives
Over the past several years, many components in UPS 
and ubiquitin-like systems have been identified in M. 
oryzae. Ubiquitination plays pivotal roles in several bio-
logical processes, including conidium germination, 
appressorium formation and development, cell wall 
integrity, stress response and pathogenicity. However, 
compared with the detailed mechanism of ubiquitination 
that has been revealed in S. cerevisiae, a large number of 
component proteins in the ubiquitin system of M. oryzae, 
especially E3 ligases, are uncharacterized even at present. 
Moreover, the substrates of the characterized compo-
nents remain elusive. Revealing the biological function of 
more E3/E2s and identifying their substrates in the future 
will help us to understand the underlying mechanism of 
ubiquitination in the pathogenicity of M. oryzae.

Although efficient methods to screen substrates of 
the ubiquitin system are still lacking, many substrates 
have been identified in yeast and model plant Arabi-
dopsis via screening E3 ligase-interaction proteins or 
using PTM proteomics approaches. PTM proteomics 
approaches have been used to identify target proteins 
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of phosphorylation, acetylation and N-glycosylation 
in M. oryzae (Franck et  al. 2015; Sun et  al. 2017; Wang 
et al. 2017; Liang et al. 2018; Chen et al. 2020). In addi-
tion, the ubiquitination system has been studied well in 
yeast. Identification of the homologues of ubiquitination 
components and their substrates in yeast or other spe-
cies gives us a clue to better understand the ubiquitin 
system in rice blast fungus. Based on these methods, we 
believe that more substrates of the ubiquitin system can 
be identified in the future to depth our understanding 
of ubiquitination in M. oryzae. Additionally, one protein 
can be ubiquitinated by different E3 ligases, and one E3 

ligase can also target several proteins in response to dif-
ferent signals. Therefore, revealing the interaction rules 
of different E3s with their substrates is helpful for us to 
understand the complexity of ubiquitination in response 
to different signals.

Ubiquitination and other PTMs closely regulate each 
other in the field of plants and animals. For example, 
phosphorylation can directly modify the stability of pro-
teins or regulate the activity of E3 liagese. Phosphorylated 
ABA transporter NRT1.2/NPF4.6 and aquaporin proteins 
PIP2;1/PIP2;2 exhibit a faster degradation rate, whereas 
the degradation of their non-phosphorylated forms is 

Table 1 Ubiquitin pathway‑associated proteins in M. oryzae 

Type Proteins Encoding gene Biological function Targets References

Polyubiquitin PUB4 AF056625 Induced/inhibited by environ‑
mental stress

? McCafferty and Talbot (1998)

UEP1/UEP3 AF056623 ?

AF056624

UN MGG_01282 Growth, pathogenicity and 
nitrogen‑starvation stress

? Oh et al. (2012)

E2 MoRad6 MGG_01756 Growth and pathogenicity ? Shi et al. (2016)

RING type E3 ligase MoUbr1 MGG_13171 Growth, pathogenicity and 
N‑end protein degradation

?

MoBre1 MGG_00139 Growth and pathogenicity ?

MoRad18 MGG_04175 Growth and pathogenicity ?

MoHrd1 MGG_09205 Appressorium formation, patho‑
genicity and protein secretion

? Jiang et al. (2018), Tang et al. 
(2020)

SCF complex MoGrr1 MGG_13065 Growth, cell wall integrity (CWI) 
and other stress responses

? Guo et al. (2015), Li et al. (2020)

MoFwd1 MGG_09696 Growth and pathogenicity MoFRQ Shi et al. (2019)

MoCdc4 MGG_08345 Growth and pathogenicity ?

MoFbx15 MGG_00768 Growth and pathogenicity ? Shi et al. (2019), Lim and Lee 
(2020)

MoSkp1 MGG_04978 Growth, pathogenicity and CWI ? Prakash et al. (2016)

Deubiquitination enzyme MoUbp14 MGG_08270 Growth, pathogenicity, CWI and 
other stress responses

? Wang et al. (2018)

MoUbp4 MGG_04957 Growth, pathogenicity and CWI ? Que et al. (2020)

MoUbp8 MGG_03527 Growth, pathogenicity, CWI, 
other stress responses and 
carbon catabolite repression

? Yang et al. (2020)

Proteasome component 20S proteasome ? Pathogenicity ? Wang et al. (2011)

26S proteasome ? Pathogenicity ? Oh et al. (2012)

SUMO Smt3 MGG_05737 Growth, pathogenicity, CWI and 
other stress responses

Multiple proteins Liu et al. (2018)

SUMO E1 Aos1 MGG_01669 Growth, pathogenicity, CWI and 
other stress responses

Multiple proteins

Uba2 MGG_06733 Growth, pathogenicity, CWI and 
other stress responses

Multiple proteins

SUMO E2 Ubc9 MGG_00970 Growth, pathogenicity, CWI and 
other stress responses

Multiple proteins

SUMO E3 Siz1 MGG_08837 Growth, pathogenicity, CWI and 
other stress responses

Multiple proteins

Ubiquitin‑like modification MoUrm1 MGG_03978 Growth, pathogenicity, CWI and 
other stress responses

MoAHP1 Wang et al. (2019a, b)
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repressed (Chen et al. 2021; Zhang et al. 2021). Like ubiq-
uitination, SUMOylation also occurs at certain lysine 
residues; however, it often acts in competition with ubiq-
uitination to enhance the stability of its substrates. For 
example, SUMOylation of transcription factors MYB75, 
MYB30 and DREB2A inhibits the degradation of these 
proteins with different mechanisms (Catala et  al. 2007; 
Zheng et  al. 2012, 2020). Thus, the crosstalk of ubiquit-
ination with other different types of PTMs is ubiquitous 
in eukaryotes. The underlying molecular mechanism may 
involve protein conformational changes, protein–protein 
interaction or competing for the same modified amino-
acid sites. In M. oryzae, the deletion mutant in the E3 
ligase-encoding gene, MoBre1, showed a reduced level 
of dimethylation and trimethylation of histone 3 lysine 4 
(H3K4), implying that MoBre1 might be involved in the 
regulation of histone H3 methylation through monoubiq-
uitination of histone H2B, as reported in yeast (Lee et al. 
2007; Shi et al. 2016). In addition, MoSkp1 contains mul-
tiple phosphorylation sites, suggesting that the activity 
or other aspects of the SCF complex might also be modi-
fied by phosphorylation (Prakash et al. 2016). Investiga-
tions on the mutual regulation between different PTMs 
will deepen our understanding of the complex function 
of PTMs.
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