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The Pseudomonas syringae effector AvrPtoB 
targets abscisic acid signaling pathway 
to promote its virulence in Arabidopsis
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Abstract 

Phytohormones play an essential role in plant immune responses. Many phytopathogens secret effector proteins 
to promote infection and plant hormone signaling pathways are considered to be the potential targets of effectors. 
Here we found that abscisic acid (ABA) signaling was activated rapidly upon infection with Pseudomonas syringae pv. 
tomato (Pst). Pst secretes the effector AvrPtoB to target ABA 8′-hydroxylase CYP707As for degradation in Arabidopsis 
thaliana. CYP707As hydroxylate ABA to an inactive form. The degradation of CYP707As resulted in ABA accumulation 
and  compromised plant immune responses. Our study demonstrated that Pst could hijack the key components of 
Arabidopsis ABA signaling pathway to cause disease.
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Background
Due to immovable feature, plants are constantly chal-
lenged by abiotic and biotic stresses, such as drought, 
high salinity and pathogens. Many phytohormones 
have been demonstrated to play essential roles in plant 
immune response. Of the investigated hormones, sali-
cylic acid (SA), jasmonic acid (JA) and ethylene are the 
most important ones in plant basal defenses (Li et  al. 
2019; Ding and Ding 2020). The phytohormone ABA 
(abscisic acid) is known to regulate plant responses to 
abiotic stresses, but its role in  biotic stress responses 
remains inconclusive and controversial (Cutler et  al. 
2010; Cao et al. 2011; Chen et al. 2020).

In response to stress, ABA binds to its receptors PYRA-
BACTIN RESISTANCE1(PYR1)/PYR1-LIKE (PYL) and 
mediates the binding to clade A protein phosphatase2Cs 
(PP2Cs), leading to suppression of phosphatase activities. 

This results in the immediate release of sucrose non-
fermenting-1 (SNF1)-related protein kinases (SnRK2s), 
and  induces stomatal closure  as well as downstream 
gene expression via the phosphorylation of S-type anion 
channels and some transcription factors, such as ABI5 
(a basic leucine zipper transcription factor) and HAT1 
(an HD-ZIP II transcription factor) (Meyer et  al. 1994; 
Ma et al. 2009; Umezawa et al. 2009; Brandt et al. 2012; 
Dai et al. 2013). Endogenous ABA levels are regulated by 
both biosynthesis and catabolism (Nambara and Mar-
ion-Poll 2005). The Arabidopsis cytochrome P450 (CYP) 
super-family genes CYP707A encode ABA 8’-hydroxy-
lases. These enzymes catalyze the first committed step 
in ABA catabolic pathway, resulting in the production 
of 8’-hydroxy ABA. 8’-hydroxy ABA is then isomerized 
spontaneously to phaseic acid (PA), leading to the sig-
nificant reduction in biological activity of ABA (Kushiro 
et  al. 2004; Saito et  al. 2004). In Arabidopsis, there are 
four CYP707A homolog genes; of which the expression 
of CYP707A1 is dramatically induced by exogenous ABA 
application (Okamoto et  al. 2006). Arabidopsis cyp707a 
single and double mutants can accumulate high levels of 
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ABA in seeds, whereas CYP707A overexpression lines 
display lower ABA levels (Kushiro et al. 2004; Okamoto 
et al. 2006), suggesting the key roles of CYP707A in ABA 
accumulation.

ABA not only regulates stomatal closure, leaf abscis-
sion, seed germination and dormancy, but also regu-
lates plant responses to a wide range of biotic stresses. 
However, the effect of ABA signaling on basal defenses 
depends on the type of pathogens. ABA-deficient 
mutants aba1-6, abi1-1 and abi2-1 exhibit enhanced 
susceptibility to the soil-borne bacterium Ralstonia 
solanacearum, but they are resistant to infection of 
the necrotrophic fungus Plectosphaerella cucumerina 
(Hernández-Blanco et  al. 2007). The ABA biosynthesis 
mutants aba2-12, aao3-2 and ABA-insensitive mutant 
abi4-1 show enhanced susceptibility to oomycete patho-
gen Pythium irregular, necrotrophic pathogen Alternaria 
brassicicola, but exhibit strong resistance to necrotrophs 
Botrytis cinerea (Adie et  al. 2007); while ABA biosyn-
thesis mutant aba3-1 is susceptible to biotrophic oomy-
cete  pathogen, Hyaloperonospora arabidopsis (Fan et  al. 
2009). By contrast, the ABA biosynthesis mutants aba2-1 
and aba3-1 display enhanced resistance to the biotrophic 
powdery mildew fungus Golovinomyces cichoracearum 
(Xiao et al. 2017).

During Pseudomonas syringae infection, ABA plays a 
positive role in pre-invasive stomatal immunity by induc-
ing stomatal closure to prevent pathogen entry; however, 
it plays a negative role in post-invasive immunity (Cao 
et al. 2011). aba3-1, aba2-3 and pyr1-2 are more resist-
ant to P. syringae by syringe infiltration (García-Andrade 
et  al. 2020). Application of exogenous ABA enhances 
plant susceptibility to Pst and Pst  hrpA−, a type III pro-
tein secretion system (T3SS)-defective mutant (de Tor-
res-Zabala et  al. 2007; Fan et  al. 2009; Tan et  al. 2019; 
García-Andrade et  al. 2020). Notably, Pst infection has 
been reported to induce the accumulation of endogenous 
ABA, which is likely one of the reasons that this pathogen 
causes disease in Arabidopsis plants (de Torres-Zabala 
et al. 2007; Gao et al. 2016).

Many phytopathogens deploy effector proteins to sub-
vert host immune response or target susceptible genes 
to promote infection. Pst, for instance, can deliver a set 
of effector proteins to host cells, which dramatically sup-
press host immune responses. Introducing Pst effector 
HopAM1 to Arabidopsis markedly increases water avail-
ability and colonization ability of the pathogen. HopAM1 
also suppresses host basal defense and improves the sen-
sitivity to ABA in plants (Goel et al. 2008). Likewise, the 
effector protein AvrPtoB has E3 ligase activity and can 
target host receptor-like kinases (RLKs) such as FLS2, 
CERK1 and LecRK-IX.2 for degradation, which subse-
quently suppresses the immune responses mediated by 

these receptors (Janjusevic et al. 2006; Göhre et al. 2008; 
Gimenez-Ibanez et  al. 2009; Xu et  al. 2020). The Arabi-
dopsis genome harbors 23 EXO70 protein family mem-
bers, some of which are involved in plant immunity. 
AvrPtoB can ubiquitinate and mediate the degradation 
of EXO70B1 to overcome EXO70B1-mediated resistance 
(Wang et al. 2019). Conditional expression of AvrPtoB in 
Arabidopsis results in a significant increase in ABA level 
and an enhanced susceptibility to Pst  hrpA− (de Torres-
Zabala et al. 2007).

We previously demonstrated that AvrPtoB targets 
LecRK-IX.2 for degradation, leading to immune suppres-
sion in host plants. AvrPtoB can also mediate the degra-
dation of NON-EXPRESSER OF PR1 GENES1 (NPR1) 
to interfere with SA signaling and subvert plant innate 
immunity (Chen et  al. 2017). However, how AvrPtoB 
manipulates host’s ABA signaling pathway is unclear. In 
this study, we reveal that AvrPtoB targets ABA 8’-hydrox-
ylase CYP707As for degradation, which subsequently 
facilitates ABA accumulation and promotes Pst infection.

Results
cyp707a mutants demonstrate compromised PTI responses
Recognition of pathogen- or microbe-associated molecu-
lar patterns (PAMPs or MAMPs) is essential for plants 
to distinguish self- and nonself-components (Zipfel 
2014). To explore this process, we screened a stock of 
Arabidopsis mutants by treating with flg22, a peptide of 
bacterial flagellin that can trigger strong PTI response 
(Gómez-Gómez et  al. 1999). Two mutants, cyp707a1 
(cyp707a1-1, SALK_069127) and cyp707a2 (cyp707a2-2, 
SALK_083966) showed a reduction in both flg22-induced 
ROS production and the expression of PTI responsive 
gene FRK1 (Fig. 1a and Additional file 1: Fig. S1a) (Asai 
et  al. 2002). These two mutants also showed a reduced 
ROS burst by another immune elicitor elf18 that is 
derived from translation elongation factor Tu of bacte-
rial pathogens (Fig. 1b). Pathogen-induced callose depo-
sition has been reported to function as a chemical and 
physical defense mechanism for host to avoid pathogen 
attack (Kunze et al. 2004). We then examined the callose 
deposition in plant leaves treated with flg22. The result 
showed that flg22-induced callose deposition was sig-
nificantly suppressed in both cyp707a1 and cyp707a2 
mutants when compared to Col-0 (Fig. 1c, d). The expres-
sion of GSL6, a gene encoding GLUCAN SYNTHASE-
LIKE (GSL) callose synthases, was also remarkably 
down-regulated in the two mutants (Additional file  1: 
Fig. S1b). MAPK activation is one of the early events that 
can be triggered by various PAMPs molecules. The flg22-
induced MAPK activation displayed slight reduction in 
cyp707a2 mutant compared with that in Col-0 (Addi-
tional file 1: Fig. S1c). The callose deposition also reduced 
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in cyp707a1 and cyp707a2 mutants after Pst  hrcC− treat-
ment (Additional file 1: Fig. S1d, e). Taken together, the 
above results indicate that CYP707A1 and CYP707A2 
positively regulate plant responses to flg22 treatment.

CYP707As are required for disease resistance to Pst
There are four members of CYP707A genes in Arabidop-
sis genome, namely CYP707A1, CYP707A2, CYP707A3 
and CYP707A4. The transcription levels of all four 
CYP707As were induced by dehydration and exoge-
nous ABA treatment (Saito et al. 2004). We checked the 
expression patterns of these four genes in Plant eFP data-
base. The results showed that all of the genes are induced 
by abiotic stress, such as auxin (IAA), ABA, methyl jas-
monate (MeJA), cold, osmotic, salt and drought treat-
ment. CYP707A1 and CYP707A4 transcription can also 
be induced by heat treatment (Additional file 1: Fig. S2a, 
b). For biotic stress, four genes showed reduced expres-
sion after flg22, Pst  hrcC− (a T3SS deficient mutant) 

and Pst treatment, except for CYP707A1 and CYP707A4 
which, by contrast, were induced by Pst (Additional 
file  1: Fig. S2c). To confirm the results from the data-
base, we used RT-qPCR to analyze the expression levels 
of CYP707A1 and CYP707A2, and found that both genes 
can be slightly induced by flg22 and Pst compared with 
mock treatment at 6 hpi, but returned to the base level 
at 24 hpi (Fig.  2a, b). In addition, cyp707a2 displayed 
enhanced susceptibility to Pst  hrcC− and was more sus-
ceptible to Pst inoculation; however, cyp707a1 was more 
susceptible to Pst treatment but not Pst  hrcC− (Fig.  2c, 
d). These data reveal that CYP707A1 and CYP707A2 
are positive regulators of plant disease resistance to Pst, 
and suggest that Pst effector(s) likely targets CYP707s to 
promote pathogenicity.

AvrPtoB interacts with CYP707As
As the effector(s) may interfere with CYP707A-mediated 
immune response, we then investigated the potential 
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Fig. 1 The cyp707a mutants display reduced PTI response. a and b flg22- and elf18-induced ROS burst is reduced in cyp707a mutants. Leaf discs 
from three-week-old Arabidopsis plants were treated with 100 nM flg22 or 100 nM elf18, and the ROS burst was recorded.  H2O served as a control. 
Error bars represent means ± SD (n = 3 biological replicates). RLU, Relative light units. c and d cyp707a mutants display decreased callose deposition 
in response to flg22 treatment. Four-week-old Col-0 and cyp707a mutants were syringe infiltrated with Mock (10 mM  MgCl2) or 100 nM flg22. The 
calloses were stained with aniline blue (c) and counted under microscope (d) at 12 hpi (hours post-inoculation). Scale bar = 100 μm. Error bars 
represent means ± SD (Two-way ANOVA, P < 0.001, n = 4)
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effector(s) in this event. Pst secretes ca. 30 effectors 
into plant cells (Xin and He 2013). In order to find the 
effector(s) that may target CYP707A1 or CYP707A2, we 
cloned all the effectors and screened them by spilt lucif-
erase assays. The result showed that AvrPtoB interacted 
with both CYP707A1 and CYP707A2 (Fig.  3a). Subcel-
lular localization assays showed that CYP707A1 and 
CYP707A2 were co-localized with the plasma mem-
brane marker LTI6b-mCherry (Additional file  1: Fig. 
S3a, b),   and  exhibited the same localization pattern 
as AvrPtoB (Xu et al. 2020). To verify the interaction of 
AvrPtoB with CYP707A1 in vitro, we expressed the pro-
teins in Escherichia coli and purified the recombinant 

proteins by affinity purification. The result showed that 
MBP-CYP707A1 successfully pulled down GST-AvrPtoB 
(Additional file  1: Fig. S4a). In addition, in anti-FLAG 
co-immunoprecipitation (Co-IP) assays, CYP707A1 and 
CYP707A2 interacted with AvrPtoB but not GFP alone in 
N. benthamiana leaves (Fig. 3b, c).

AvrPtoB targets CYP707As for degradation
The above results showed that AvrPtoB interacted with 
CYP707A1 and CYP707A2 in  vitro and in  vivo. We 
therefore explored the biological significance of the 
interactions. AvrPtoB is a 553-amino-acid protein. Its 
N-terminus and C-terminus contain a Pto-interacting 
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Fig. 2 CYP707As positively regulate disease resistance to Pst. a and b CYC707As expression after flg22 and Pst treatment. Four-week-old Arabidopsis 
leaves were inoculated with Mock (10 mM  MgCl2), 100 nM flg22 and Pst at a concentration of 5 ×  107 CFU/mL. Samples were collected for RT-qPCR 
at indicated time. Error bars represent means ± SD (n = 3 biological replicates). c and d Growth of Pst  hrcC− and Pst in Col-0 and cya707a mutants. 
Four-week-old Arabidopsis leaves were inoculated with Pst  hrcC− (c) or Pst (d) at a concentration of 5 ×  104 CFU/mL. The plants were subjected to 
growth curve analysis at 3 days post-inoculation (dpi). Error bars represent means ± SD (Two-way ANOVA, ns, no significance; n = 6)

Fig. 3 AvrPtoB interacts with CYP707As. a AvrPtoB interacts with CYP707As in N. benthamiana by split luciferase assays. N. benthamiana leaves were 
co-infiltrated with 35S:cLUC-AvrPtoB and 35S:CYP707A1-nLUC or 35S:CYP707A2-nLUC. Luciferase complementation imaging assays were performed 
48 h later. This experiment was repeated three times with similar results. RLU, Relative light units. The combination of 35S:C2-nLUC and 35S:cLUC-S1 
was used as a positive control. b and c AvrPtoB interacts with CYP707As  in vivo by co-immunoprecipitation assays. N. benthamiana leaves were 
co-infiltrated with 35S:CYP707A1-HA or 35S:CYP707A2-HA and 35S:AvrPtoB-FLAG or 35S:GFP-FLAG. Plant leaves were immunoprecipitated with 
anti-FLAG beads, and the proteins were immunoblotted by anti-FLAG antibody. Co-IP proteins were immunoblotted by anti-HA antibody
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domain (PID) and a U-box type E3 ubiquitin ligase 
domain, respectively (Janjusevic et al. 2006; Xiao et al. 
2007). We further detected whether AvrPtoB can also 
mediate CYP707As degradation. In N. benthamiana 
leaves co-expressing dexamethasone (Dex)-inducible 
AvrPtoB-FLAG and 35S:CYP707A1-T7, Dex treatment 
significantly reduced the CYP707A1-T7 protein levels 
(Fig.  4a). However, CYP707A1-T7 protein levels were 
completely rescued in the presence of the 26S protea-
some inhibitor MG132 (Fig.  4b). To examine the deg-
radation event during Pst infection, we inoculated the 
35S:CYP707A1-T7 transgenic plant with Pst and Pst 
(ΔavrPtoB). The result revealed that Pst rather than 

Pst (ΔavrPtoB) infection led to the degradation of 
CYP707A1 (Fig. 4c).

To assess whether AvrPtoB can degrade other 
CYP707As and key regulators in ABA signaling, we 
also detected their protein levels when co-expressed 
with AvrPtoB in N. benthamiana leaves. As shown in 
Additional file  1: Fig. S4b, CYP707A3 protein level was 
reduced when co-expressed with AvrPtoB, the same as 
that for CYP707A1 and CYP707A2. But the PP2Cs ABI1 
and ABI2, two negative regulators of ABA signaling path-
way, showed no significant differences when co-expressed 
with AvrPtoB or GFP alone (Additional file 1: Fig. S4c). 
NGATHA (NGA1) is a transcriptional activator of the 

Fig. 4 AvrPtoB mediates CYP707A1 degradation by 26S proteasome. a AvrPtoB targets CYP707A1 for degradation. N. benthamiana leaves were 
co-infiltrated with 35S:CYP707A1-T7 and Dex:AvrPtoB-FLAG. Plants were infiltrated with 3 μM Dex at 48 hpi to induce the expression of AvrPtoB-FLAG. 
Leaf extracts were sampled for immunoblotting after mock or Dex treatment at indicated times. Mock is 10 mM  MgCl2. b The proteasome inhibitor 
MG132 prevents CYP707A1 from degradation. 35S:CYP707A1-T7 was transiently expressed with 35S:GFP-FLAG or 35S:AvrPtoB-FLAG in N. benthamiana. 
MG132 (100 μM) was used to inhibit 26S proteasome-mediated protein degradation at 36 hpi. Samples were harvested at 8 h after MG132 
treatment for immunoblotting. c Pst harbored AvrPtoB degrades CYP707A1. 35S:CYP707A1-T7 stable transgenic plants were inoculated with Mock 
(10 mM  MgCl2), Pst or Pst (ΔavrPtoB) at a concentration of 2.5 ×  103 CFU/mL, respectively. Infected leaves were sampled for immunoblotting at 12 
hpi. d AvrPtoB ubiquitinates CYP707A1 in vivo. 35S:CYP707A1-FLAG was transiently expressed with 35S:AvrPtoB-T7 or 35S:EV-T7 in N. benthamiana. 
MG132 (100 μM) was used to inhibit 26S proteasome-mediated protein degradation at 36 hpi. Samples were harvested at 8 h after MG132 
treatment. Plant leaves were immunoprecipitated with anti-FLAG beads, and the proteins were immunoblotted by anti-FLAG and anti-T7 antibodies
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key enzyme NINECIS-EPOXYCAROTENOID DIOXY-
GENASE 3 (NCED3) in ABA biosynthesis (Sato et  al. 
2018). The protein level of NGATHA was not affected 
by AvrPtoB, neither was VirE2-INTERACTING PRO-
TEIN1 (VIP1), a transcriptional activator of CYP707A1 
and CYP707A3 (Additional file  1: Fig. S4d) (Tsugama 
et al. 2012). To investigate whether AvrPtoB can ubiquit-
inate CYP707As in vivo, we co-expressed CYP707As and 
AvrPtoB in N. benthamiana. By FLAG Co-IP assays, we 
found that CYP707A1 and CYP707A2 were highly ubiq-
uitinated when co-expressed with AvrPtoB but not with 
EV (Fig. 4d and Additional file 1: Fig. S4e). In summary, 
these results demonstrate that CYP707As are the target 
of AvrPtoB and can be degraded via 26S proteasome.

AvrPtoB promotes ABA sensitivity in Arabidopsis
Previous studies have demonstrated that AvrPtoB trans-
genic seedlings are hypersensitive to SA-induced toxicity 
and Dex:HopAM1 transgenic lines are severely inhibited 
by ABA (Goel et al. 2008; Chen et al. 2017). Dex:AvrPtoB 
transgenic plant can induce a significant increase in 
ABA levels after Dex treatment for 6 h (de Torres-Zabala 
et al. 2007). We therefore examined the responses of the 
pEst:AvrPtoB transgenic seedlings in the presence of 
ABA. The two AvrPtoB transgenic lines exhibited a lower 
cotyledon greening rate than Col-0 and pEst: EV (empty 
vector) transgenic line (Fig. 5a–c). AvrPtoB also markedly 
induced the expression of NCED3 and RAB18, two ABA-
responsive genes (Fig.  5d, e). Furthermore, we deter-
mined whether AvrPtoB can also regulate auxin and JA 
signaling pathways. AvrPtoB transgenic seedlings showed 
no significant difference in seed germination compared 
with Col-0 and pEst:EV transgenic lines after auxin 
(IAA), methyl jasmonate (MeJA) and extradiol treatment 
(Additional file 1: Fig. S5a, b), but they exhibited hyper-
sensitivity to SA treatment (Additional file  1: Fig. S5c) 
(Chen et  al. 2017). Nevertheless,  these results indicate 
that AvrPtoB promotes sensitivity to ABA in Arabidopsis.

CYP707As are virulent targets of AvrPtoB
To gain insight into the function of CYP707As in plant 
immunity, we next analyzed the role of AvrPtoB in 
CYP707As-mediated defense during Pst infection. We 
compared bacterial replication in Col-0, cyp707a1 and 
cyp707a2 after inoculation with Pst or Pst (ΔavrPtoB). 
There was no significant difference between Col-0 and 
cyp707a1 under Pst (ΔavrPtoB) treatment, while the dif-
ference between Col-0 and cyp707a2 was reduced when 
compared to Pst treatment (Fig.  6a). Exogenous appli-
cation of ABA treatment resulted in the proliferation 
of Pst. We found that when the plants were pre-treated 
with ABA or ABA inhibitor fluridone, Pst proliferated 
to a similar level in Col-0 and cyp707a1; however, the 

difference between Col-0 and cyp707a2 was significantly 
reduced than mock treatment (Fig.  6b, c). Notably, flu-
ridone did not inhibit the growth of Pst (Fig. 6d). These 
results further suggest that AvrPtoB targets CYP707A1 
and CYP707A2 to promote infection.

Discussion
ABA is a major phytohormone that is involved in a vari-
ety of biotic and abiotic responses in plants. Although 
ABA has been demonstrated to have a clear role in abi-
otic stresses, it remains disputed for its roles in plant 
immunity (Adie et  al. 2007; Hernández-Blanco et  al. 
2007; Fan et  al. 2009; Cao et  al. 2011; Xiao et  al. 2017; 
Tan et  al. 2019). ABA induces stomatal  closure under 
drought stress, and this prevents plants from water loss. 
It is known that stomatal closure can prevent Pst invasion 
through these natural pores (Melotto et al. 2006). How-
ever, during post-invasive stage, stomatal  closure facili-
tates the establishment of an aqueous intercellular space 
with high humidity, which benefits Pst proliferation (Xin 
et al. 2016).

In addition to manipulating stomata to help prevent 
water loss, endogenous ABA has been found to facili-
tate Pst infection. In fact, Pst infection could induce 
ABA accumulation in Arabidopsis, and the effector pro-
tein AvrPtoB has been suggested to dictate this process 
(de Torres-Zabala et  al. 2007). By screening the Arabi-
dopsis mutant stock, we discovered that cyp707a1 and 
cyp707a2 mutants were susceptible to Pst infection, and 
identified CYP707A proteins as the targets of AvrPtoB 
to induce ABA accumulation. Therefore, we resolved the 
mystery of Pst–induced ABA accumulation in Arabidop-
sis (Fig. 7). CYP707As are key enzymes in the oxidative 
catabolism of ABA and their roles in plant immunity 
are unclear (Kushiro et al. 2004; Saito et al. 2004). ABA 
can attenuate callose deposition which is associated 
with basal defense (de Torres-Zabala et al. 2007; García-
Andrade et  al. 2011). ABA pre-treatment can reduce 
flg22-induced  H2O2 generation (Tan et  al. 2019). The 
reduced production of flg22-induced ROS in cyp707a 
mutants may be attributed to the high level of endoge-
nous ABA. Although only the cyp707a2 mutant showed 
enhanced susceptibility to Pst  hrcC−, both cyp707a1 and 
cyp707a2 mutants were susceptible to Pst (Fig. 2), high-
lighting the CYP707As’ role in plant basal defense.

By in  vitro and in  vivo protein–protein interac-
tion assays, we were able to show that CYP707A1 and 
CYP707A2 physically interacted with AvrPtoB. AvrPtoB 
is a C-terminal U-box type E3 ubiquitin ligase and targets 
multiple immune regulators in host cells, such as FLS2, 
CERK1, LecRK-IX.2 and NPR1 (Göhre et al. 2008; Gime-
nez-Ibanez et al. 2009; Chen et al. 2017; Xu et al. 2020). 
Unlike the immune regulators, CYP707 family proteins 
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have not been shown to act in plant immune responses 
yet. CYP707A proteins contribute to ROS burst and cal-
lose deposition during pathogen infection, indicating 
their roles in early immune responses (Fig. 1). However, 
CYP707As are key enzymes that catalyze ABA to an 
inactive form. The cyp707a mutants accumulated high 
levels of endogenous ABA and were susceptible to Pst, 
suggesting that CYP707A could inactivate ABA to atten-
uate Pst infection. AvrPtoB can increase the expression 
of NCED3 and foliar ABA levels in Arabidopsis, how-
ever, it is unknown how AvrPtoB manipulates plant ABA 

signaling pathway (de Torres-Zabala et al. 2007). In this 
article, we revealed that CYP707A1 and CYP707A2 are 
additional targets of AvrPtoB.

It has been reported that many effectors promote path-
ogenicity through manipulating plant hormone signaling 
pathway. HopAM1 is the first type III effector that was 
reported to aid pathogen adaptation to water availability 
in plant. Although the expression of HopAM1 in trans-
genic plants does not induce ABA production, it does 
enhance ABA responses and suppress basal defenses 
(Goel et  al. 2008). HopZa1 targets the orthologues of 

Fig. 5 AvrPtoB increases ABA sensitivity in Arabidopsis. a Ecotopic expression of AvrPtoB increases the sensitivity to ABA in plants. The Arabidopsis 
seedlings were grown on ½ MS containing 0.1 μM ABA or 50 μM estradiol or both for 7 days. Scale bar = 2.5 mm. b Seed germination greening 
ratio in (a). Error bars represent means ± SD (Two-way ANOVA, P < 0.01, n = 3). c AvrPtoB protein levels in pEst:AvrPtoB transgenic plants. The AvrPtoB 
proteins were shown in two independent AvrPtoB transgenic lines after 50 μM estradiol treatment (a). d and e AvrPtoB induces ABA regulatory 
gene expression. The two-week-old transgenic plants were sprayed with 50 μM estradiol. The plant leaves were sampled at 12 hpi for RT-qPCR 
assays. Error bars represent means ± SD (Two-way ANOVA, P < 0.0001, n = 3)
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JAZ1 in both soybean (Glycine max) and Arabidopsis to 
promote their degradation in a COI1-dependent manner, 
thereby activating JA signaling to enhance Pst infection 
(Jiang et al. 2013). For the hemi-biotrophic fungus Fusar-
ium oxysporum, the effector SECRETED IN XYLEM4 
(FoSIX4) can contribute to disease development caused 
by F. oxysporum when expressed in Arabidopsis. Arabi-
dopsis plants inoculated with the six4 mutant strain show 
reduced expressions of JA-responsive genes, demonstrat-
ing that FoSIX4 promotes pathogen virulence via activat-
ing host JA signaling pathway (Thatcher et  al. 2012). In 
addition to JA, ethylene is a gaseous hormone that reg-
ulates various biological processes in plants, including 
defense against pathogens. The Xanthomonas euvesica-
toria (Xcv) effector protein XopD, carrying a C-terminal 
SUMO protease domain, is reported to target the tomato 
ethylene responsive transcription factor SlERF4 to sup-
press ethylene production, which is required for anti-Xcv 
immunity and symptom development (Kim et  al. 2013). 

HopAF1 secreted by P.syringae inhibits host defense 
response by manipulating MTN (methylthioadenosine 
nucleosidase) activity and consequently dampens ethyl-
ene production (Washington et  al. 2016). As a counter-
defense strategy, oomycetes pathogen Phytophthora sojae 
secretes the RXLR effector PsAvh238 to destabilize plant 
Type2 1-aminocyclopropane-1-carboxylate synthases 
(ACSs), the key enzymes in catalyzing the rate-limiting 
step of ET biosynthesis, to reduce ET production and 
promote infection (Yang et al. 2019).

Conclusions
Taken together, we discovered an additional virulence 
target of the Pst effector AvrPtoB in Arabidopsis. We 
demonstrated that AvrPtoB induced ABA accumulation 
by degrading ABA 8’-Hydroxylase CYP707As to promote 
Pst infection. Because AvrPtoB targets multiple proteins 
in plants, it is interesting to unravel the dynamic inter-
actions of AvrPtoB with these proteins in future studies. 

Fig. 6 CYP707As are virulent targets of AvrPtoB. a–c Growth of Pst and Pst (ΔavrPtoB) in Col-0 and cya707a mutants. Four-week-old Arabidopsis 
leaves were inoculated with Pst and Pst (ΔavrPtoB) at a concentration of 5 ×  104 CFU/mL (a) or sprayed with Mock  (H2O) or ABA (100 μM) (b) or 
10 μM fluridone (c) 12 h before pathogen treatment. The plants were subjected to growth curve analysis at 3 dpi. Error bars represent means ± SD 
(Two-way ANOVA, ns, no significance; n = 6). d 10 μM fluridone doesn’t inhibit Pst growth on NYGA medium. The Pst was serially diluted on NYGA 
medium with or without 10 μm fluridone. The photographs were taken after incubation for 4 days
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In addition, how ABA enhances plant susceptibility to Pst 
is still unknown. It is worth investigating if ABA could 
increase interior humidity in plant cells, thereby facilitat-
ing pathogen proliferation.

Methods
Plant materials and growth conditions
A. thaliana T-DNA insertion mutants cyp707a1-1 
(SALK_069127) and cyp707a2-2 (SALK_083966c) 
were used. Plants were grown at 23  °C under 10  h of 
light/14 h of dark for 4 weeks. pEst:EV, pEst:AvrPtoB and 
35S:CYP707A1-T7 transgenic plants were generated via 
floral dip transformation procedure (Clough and Bent 
1998). For phytohormones phenotyping assays, surface-
sterilized seeds were sowed on 1/2 MS medium with or 
without phytohormones or estradiol. The seeds were 
stratified at 4  °C for 3 days in dark before being planted 
on media. Then the plates were moved to a growth cham-
ber at 23 °C under short-day conditions.

ROS burst measurement
Three-week-old Arabidopsis seedling leaves were sam-
pled for leaf disks and kept in 96-well plate with  ddH2O 
overnight. Before measurement,  ddH2O was replaced 
by reaction mixtures containing 17  mM luminol L-012 

(Wako), 10 mg/mL horseradish peroxidase, 100 nM flg22 
or 100 nM elf18. Each treatment contained at least three 
replications. Luminescence was measured continuously 
for 30 min using Infinite F200 (TECAN).

MAPK assay
Two-week-old Arabidopsis seedlings on the plate were 
sprayed with  ddH2O or 100 nM flg22. Samples were col-
lected and frozen in liquid nitrogen at indicated time 
points. The total proteins were extracted with 1 × lae-
mmli (0.0625  M Tris–HCl, 10% glycerol, 2% SDS, 
0.0025% bromophenol blue, 5% 2-mercaptoethanol, pH 
6.8) buffer and separated on a 12% SDS-PAGE. Activated 
MAPKs were detected by immunoblotting with phos-
pho-p44/42 MAPK antibody (Cell Signaling).

Callose staining and quantification
Leaves of four-week-old Arabidopsis plants were infil-
trated with  H2O, 100 nM flg22 or Pst  hrcC− at a concen-
tration of 5 ×  107 CFU/mL in 10 mM of  MgCl2 for 12 h 
or 24  h. The leaves were transferred into FAA solution 
(10% formaldehyde, 5% acetic acid and 50% ethanol) for 
12 h, de-stained in 95% ethanol for 6 h and washed twice 
with  ddH2O, then stained with 0.01% aniline blue in 
150 mM  KH2PO4 (pH 9.5) for 1 h at room temperature. 

Fig. 7 The working model. ABA is catalyzed to 8’-hydroxyl ABA by CYP707As, a group of P450-type mono-oxygenases, to maintain ABA signal 
homeostasis in Arabidopsis plants. During Pst infection, the pathogen-delivered effector AvrPtoB degrades CYP707As via 26S proteasome. As a 
result, ABA is accumulated, which leads to increased susceptibility to Pst 
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The callose deposits were visualized with a fluorescence 
microscope (OLYMPUS IX71). Callose deposits were 
counted by Image J software.

RT–qPCR
Total RNA was isolated from plants treated with differ-
ent conditions at indicated time points by TRIzol Rea-
gent (Invitrogen) according to the technical manual. One 
microgram of total RNA was subjected to synthesize 
the first-strand cDNA by HiScript Q RT SuperMix with 
a genomic DNA wipe (Vazyme, China) according to the 
technical manual. qPCR was performed by the Bio-Rad 
system using ChamQ SYBR qPCR Master Mix (Vazyme, 
China). Actin2 was used as an internal control. Each 
sample was performed in triplicate (Additional file  2: 
Table S1).

Pathogen inoculation assay
Bacterial strains were grown on NYGA medium (0.5% 
Peptone, 0.3% yeast extract and 0.2% glycerin) at 28  °C. 
Four-week-old Col-0, cyp707a1 and cyp707a2 were infil-
trated with Pst, Pst  hrcC− or Pst (ΔavrPtoB) at a con-
centration of 5 ×  104  CFU/mL, respectively. Three days 
after inoculation, plants were subjected to growth curve 
analysis as described by Liu (Liu et  al. 2011). The Pst 
(ΔavrPtoB) deletion mutant were described previously 
(Xu et al. 2020).

Transient expression in Nicotiana benthamiana
For split-luciferase complementation assay, Agrobacte-
rium tumefaciens (strain EHA105) carrying the indicated 
nLUC and cLUC constructs was mixed and infiltrated 
into 4-week-old N. benthamiana leaves. 35S:C2-nLUC 
and 35S:cLUC-S1 were used as a positive control (Zhang 
et al. 2011). Two days after infiltration, N. benthamiana 
leaves were rubbed with 0.5 mM D-luciferin (Gold Bio-
technology) and kept in the dark for 5 min. The luciferase 
images were captured by Tanon-5200 (Chen et al. 2008).

For subcellular localization assay, CYP707A1 or 
CYP707A2 were fused to GFP at their C-terminal under 
the control of 35S promoter (35S:CYP707A1-GFP or 
35S:CYP707A2-GFP) and transiently expressed in N. 
benthamiana. The images were observed using a Leica 
SP8 confocal laser microscope at 48 hpi. LTI6b-mCherry 
was used as a marker.

For Co-IP assay, CYP707A1-HA, CYP707A2-HA, GFP-
FLAG and AvrPtoB-FLAG under the control of 35S pro-
moter were transient expressed in N. benthamiana by A. 
tumefaciens strain GV3101. At about 48 h, the infiltrated 
leaves were sampled and total proteins were extracted 
with extraction buffer (50 mM Tris–HCl, 150 mM NaCl, 
0.1% Triton, 0.2% NP-40, 6  mM 2-mercapto-Ethanol 
and proteinase inhibitor cocktail (Roche), pH7.5). The 

anti-FLAG IP was performed by incubating the pro-
teins with 30 μL anti-FLAG (R) M2 Affinity Gel (Sigma-
Aldrich, catalog # A2220) for 2  h on an end-over-end 
shaker at 4 °C. After washing three times with extraction 
buffer, the eluted proteins were separated by SDS–PAGE 
and revealed by immunoblot analysis using anti-FLAG 
and anti-HA antibody.

Recombinant protein purification
GST-AvrPtoB were purified as described previously 
(Xu et al. 2020). CYP707A1 were cloned into the vector 
pMal-C4X. The positive clones were transformed into 
Escherichia coli (BL21). Bacterial cells were grown in 
Luria Broth (LB) medium at 37 °C with shaking until the 
OD600 reaches 0.6. The MBP-CYP707A1 was induced 
with 0.5 mM IPTG at 16 °C overnight and purified using 
amylose beads according to the technical manual. The 
purified proteins were ultrafiltrated and diluted in PBS 
buffer containing 10% glycerin to 1 μg/μL and stored at 
− 80 °C before use.

MBP pull‑down assays
MBP pull-down assays was performed as described by 
Liu et al. (2011) with minor modification. In brief, 3 μg of 
each MBP-CYP707A1 and GST-AvrPtoB were incubated 
in TEN100 buffer (20  mM Tris–HCl (pH 7.4), 100  mM 
NaCl, 0.1  mM EDTA and 0.2% Triton X-100) with 30 
μL amylose beads on an earthquake shaker for 2  h at 
4  °C. Then the beads were washed at least 4 times with 
NETN300 buffer (20  mM Tris–HCl (pH 7.4), 300  mM 
NaCl, 0.1 mM EDTA and 0.5% NP-40). The proteins were 
eluted by adding 50 μL 1 × laemmli buffer and boiled for 
5 min at 95 °C. Eluted proteins were separated on a 12% 
SDS-PAGE gel and immunoblotted with anti-MBP and 
anti-GST antibody, respectively.
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