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Abstract 

Apple Valsa canker (AVC) has caused significant losses worldwide, especially in East Asia. Various fungal spe-
cies from the genus Cytospora/Valsa can infect tree bark and cause tissue rot, and Valsa mali (Vm) is responsible 
for the most severe tree branch deaths and yield losses. Since AVC was first reported in Japan in 1903, the pathogen 
species, biological characteristics, infection and pathogenesis, spore dissemination, and disease cycle have been 
intensively investigated. Based on the new cognition of the disease dynamics, the disease control strategy has shifted 
from scraping diseased tissue to protecting the bark from infection. In this review, we summarize new knowledge 
of the Vm infection process mediated by various kinds of virulence factors, including cell wall degrading enzymes, 
toxins, effectors, microRNA-like RNAs, and pathogenic signaling regulators. We also introduce progress in evaluating 
germplasm resources and identifying disease response-related genes in apples. In addition, we elaborate current 
understanding of spore dissemination and disease cycles in orchards and disease prevention techniques. Finally, we 
provide recommendations for developing more cost-effective strategies for controlling AVC by applying genetic 
resistance and biological fungicides.
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Background
Apple (Malus domestica Borkh) is one of the world’s most 
widely planted fruit crops (Cornille et al. 2014; Daccache 
et al. 2020). China is the largest producer and consumer 
of apples globally. According to the most recent statistical 
data, the total production was 47.57 million tons in 2022 
(http://​www.​stats.​gov.​cn/), accounting for almost half of 
the world’s apple production. However, fruit quality and 
yield per unit area in China are much lower than in other 
agriculturally developed countries. The main reason for 
this is thought to be the fungal disease, apple Valsa can-
ker (AVC), which occurs in almost every apple-growing 

region each year, usually with an incidence of more than 
50% (sometimes even 100%), significantly limiting the 
production (Chen et al. 1982a; Vasilyeva and Kim 2000; 
Wang et al. 2005, 2020; Cao et al. 2009; Zhang et al. 2014; 
Xu et al.2020a).

AVC was first reported in Japan in 1903, where it 
caused severe damage and economic losses in orchards 
(Ideta 1909; Tanaka 1918; Togashi 1925). Later, AVC was 
reported in many countries, including the United States, 
Korea, Iran, Canada, England and South Africa (Stevens 
1919; Leonian 1921; Nakata and Takimoto 1928; Fisher 
and Reeves 1931; Ogilvie 1933; Leyendecker 1952; Prof-
fer and Jones 1989; Brown-Rytlewski and McManus 
2000; Adams et al. 2006; Fotouhifar et al. 2010). In China, 
AVC was first discovered in Liaoning province in 1916, 
and large numbers of fruit trees were destroyed, result-
ing in huge economic losses (Liu et al. 1979; Chen et al. 
1982a).
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A variety of fungal species from the genus 
Cytospora/Valsa have been associated with AVC, but 
V. mali (Vm) is believed to be the most devastating 
in China (Lu 1992; Wang et al. 2011, 2014a; Gui et al. 
2015; Ma et  al. 2018; Liu et  al. 2020; Pan et  al. 2020; 
Li et  al. 2022). AVC caused by Vm mainly occurs in 
the stems and large branches of trees. The bark sur-
face is often wet and becomes slightly uplifted; the 
bark tissues become putrefied and easily ruptured. 
The infected tissues then gradually dry out, collapse 
slightly, and finally form localized cankers. Under high 
levels of disease, branches and trees may wither or die 
(Fig.  1). This review summarizes the current knowl-
edge of AVC, especially regarding the pathogenic 
mechanism of Vm and disease control techniques.

The colonization of Vm can occur not only in 
the bark tissues but also in the xylem
Early evidence indicated that ascospores and conidia 
of Vm could invade the tissues only through macro-
scopic wounds, such as pruning wounds, and dead tis-
sues, such as rhytidomes (Tamura et al. 1973; Sakuma 
1978; Chen et  al. 1981). Subsequently, it was thought 
that pruning wounds, especially when fresh, were the 
main invasion points (Wang et  al. 2016b). However, 
histocytological analysis showed that the conidial ger-
mination tubes or hyphae from germinated conidia 
could invade through tiny wounds, natural openings, 
and microscopic ostioles on the bark surface (Fig.  2). 
The hyphae further colonized the cortical parenchyma 
cells and phloem tissues by both inter- and intracel-
lular hyphal growth, and even invaded the xylem (Ke 
et  al. 2013). These new findings revealed a need for 

more detailed analysis of the infection process and 
development of new prevention strategies.

Various ‘weapons’ of Vm help it invade and colonize 
the stem tissue
Pathogens have evolved many ‘weapons’ to overcome 
host immune systems and permit successful infection. 
Based on genome and transcriptome analyses, many 
virulence determinants have been predicted to be asso-
ciated with Vm infection and colonization; these include 
cell wall degrading enzymes, toxins and secondary meta-
bolic synthesis-related enzymes, and various effectors 
(Ke et  al. 2014; Yin et  al. 2015, 2016b; Sun et  al. 2022). 
Traditionally, V. mali is considered saprophytic fungi or 
weakly parasitic fungi, and its infection mainly depends 
on the pectinases and toxins. As the research contin-
ues, more and more evidence show that the pathogen 
can secrete effectors to regulate host immunity with the 
characteristics of biotrophic fungi. Thus, we speculate 
that there may be a parasitic stage in the early stage of 
infection.

Effector proteins: pathogenic factors that attack 
the host immune system
Effectors are a class of proteins or small molecules 
secreted by pathogens to facilitate infection and/or trig-
ger defense responses by altering the cell structures or 
metabolic pathways of host plants (Jones and Dangl 2006; 
Kamoun 2007; Vleeshouwers and Oliver 2014). Yin et al. 
(2015) identified 193 candidate effector genes in the Vm 
genome using bioinformatic methods. VmEP1 was the 
first effector gene found to be associated with virulence 
of Vm (Li et  al. 2015). Since then, several more have 
been functionally analyzed, and deletion of VmPOD3, 

Fig. 1  Field symptoms of AVC. AVC caused by Vm occurs mainly on the trunks and large branches of trees. The bark surface is often wet and slightly 
raised; the tissues become putrid and easily split. The infected tissues gradually dry out, collapse slightly, and finally form localised cankers. If 
the disease is severe, branches wither and die, and trees may die
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VmNLP2, VmPR1a, or VmPR1c significantly reduces the 
virulence of Vm (Feng et al. 2018; Liu et al. 2021a; Wang 
et  al. 2021a). Further studies show that VmPxE1 and 
VmHEP1 promote infection of apples by targeting the 
apple L-ascorbate peroxidase MdAPX1 and leucine-rich 
repeat structure receptor kinase MdLRRP1, respectively 
(Zhang et  al. 2018a, 2019a). It has been demonstrated 
that VmEP1 contributes to virulence by targeting 
pathogenesis-related protein 10 and K homology (KH) 
domain-containing proteins (MdKRBP4) in apple to 
inhibit the accumulation of reactive oxygen species and 
reduce callus development, and Vm1G-1794 competes 
with MdEF-Tu to target MdATG8i and prevent MdEF-Tu 
degradation, in turn, promoting susceptibility of apple to 
Vm (Wang et al. 2021b; Che et al. 2022). In addition, the 
small cysteine-rich protein VmE02 has been discovered, 
and the receptor-like protein RE02 in N. benthamiana 
was shown to be necessary for VmE02-induced necro-
sis and immune responses (Nie et  al. 2019, 2021). The 
research also found that VmNIS1 is an immunity elici-
tor with no obvious influence on Vm virulence; however, 

a homolog, VmNIS2, was confirmed to be an immunity 
suppressor and a contributor to pathogen virulence (Nie 
et al. 2022). Although the functions of some effector pro-
teins have been elucidated, the molecular mechanisms 
are still poorly understood, especially the interrelation-
ships between many effector proteins during infection 
are still unclear (Fig. 3).

MicroRNA‑like RNAs: virulence modulators 
that regulate pathogenic factor expression 
or confer cross‑kingdom interference with host 
immunity
RNA interference (RNAi) is an ancient and conserved 
mechanism that affects many biological processes in 
most eukaryotes (Carthew and Sontheimer 2009; Jin 
and Zhu 2010; Li et  al. 2017). The main components 
of the RNAi pathway are Dicers, Argonautes (AGOs), 
and RNA-dependent RNA polymerases (RdRPs), 
which are responsible for small RNA generation, tar-
get gene repression, and silencing signal amplifica-
tion, respectively (Cerutti and Casas-Mollano 2006; 

Fig. 2  Conidial germination of Vm and infection to apple bark tissues. a Conidium (Co) germinates to form germ tubes (Gt) that penetrate 
the cortex (CTX) through ostioles. b Germ tubes (Gt) invading dead host tissue at an infection site (Is). c Spread of pathogenic hyphae (Hy) 
in the cortex (CTX) and the production of new invasion site (Is). d Hyphae (Hy) invade the bark tissues and spread in host cells (Hc) and intercellular 
spaces, causing tissue decay
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Ronemus et  al. 2006; Shabalina and Koonin 2008). 
Previous studies have shown that there are two Dicer-
like genes (VmDCL1 and VmDCL2) and three AGO 
genes (VmAGO1, VmAGO2, and VmAGO3) in Vm, 
which play important roles in growth, virulence, and 
small RNA (sRNA) generation (Feng et  al. 2017a, b). 
Based on this, the VmDCL2-dependent microRNA-
like RNA (milRNA), Vm-Pc-3p-92107_6, was found to 
participate in infection by interfering with the expres-
sion of virulence factor VmVPS10 (Guo et  al. 2021). 
Meanwhile, various milRNAs differentially expressed 
during pathogen vegetative growth and infection have 
been identified. Among them, Vm-milR37 has a role in 
virulence by regulating the expression of glutathione 
peroxidase gene VmGP, which contributes to the oxida-
tive stress response during infection (Feng et al. 2021). 

A core milRNA Vm-milR16 increases the expression 
levels of several virulence factors (such as VmSNF1, 
VmDODA, and VmHy1) by reducing its expression 
during the infection process to improve virulence (Xu 
et  al. 2020b). Further, the effector VmSP1 has also 
been found to be regulated by Vm-milR16 to facili-
tate the infection by targeting an apple defense-related 
gene MdbHLH189 (Xu et  al. 2023). In addition, milR-
NAs regulate the expression of host immunity-related 
genes to promote disease. Currently, the milR1 is the 
only known milRNA promoting virulence in Vm, and 
it acts by inhibiting host resistance-related genes MdR-
LKT1 and MdRLKT2 in a cross-kingdom regulatory 
manner (Xu et al. 2022b). The milRNAs and their func-
tions have been identified in tree stem disease systems 
(Fig. 3). However, a diagram of the detailed regulatory 

Fig. 3  Pathogenicity mechanisms of Vm. The action pathways of cell wall degrading enzymes, such as endo-β-1, 4-xylanase and pectate lyase, 
are shown using green arrows. Regulatory, synthetic, and secretory pathways of toxins are shown with purple arrows. Functional mechanisms 
of milRNAs that suppress endogenous genes in Vm and inhibit the apple resistance-related genes in a cross-kingdom manner are shown using 
yellow arrows. The action of the secreted proteins, including effectors and elicitors, are shown using blue arrows. Regulators, such as Gvm2, Gvm3, 
VmVeA, and VmVelB, are labeled using different shapes and colors. Immunity signal molecules and immunity-related proteins are also labeled using 
different shapes and colors. The transmission of host immunity signals is indicated using orange dashed lines



Page 5 of 11Feng et al. Phytopathology Research            (2023) 5:45 	

network needs to be illustrated, and the relationship 
between small RNAs and other pathogenic factors 
needs to be elucidated.

Cell wall degrading enzymes: virulence factors 
that disrupt host resistance by degrading cell walls
Plant pathogens produce an array of cell wall degrading 
enzymes (CWDEs) that enable them to penetrate host 
tissues by degrading wax, cuticular tissue, and cell walls. 
Pectinase was the earliest virulence factor identified in 
Vm (Fig.  3), and early work mainly focused on enzyme 
isolation and activity studies (Liu et al. 1980). More work 
based on genome and transcriptome analyses indicated 
that a large number of CWDE genes are significantly 
upregulated during Vm infection, especially pectinase 
genes (Ke et  al. 2014; Yin et  al. 2015). Histological and 
cytological investigations also indicated that pectinases 
play a vital role in Vm infection and colonization (Ke 
et al. 2013). Further research showed that deletion of pec-
tate lyase gene Vmpl4, polygalacturonase genes Vmpg7 
and Vmpg8, and endo-β-1,4-xylanase gene VmXyl1 result 
in reduced virulence of Vm (Xu et al. 2016, 2017; Yu et al. 
2018).

Toxins: powerful molecules that kill host cells
Toxins, mainly secondary metabolites produced by some 
plant pathogenic fungi, can mediate pathogen infection 
by changing cell membrane permeability and disrupting 
host mitochondria, chloroplasts, and other ultra-struc-
tures (Tsuge et  al. 2013). Previous studies on Vm tox-
ins mainly focused on the isolation and identification of 
toxin compounds. Various toxins have been isolated and 
identified, including p-hydroxybenzoic acid, p-hydroxy-
acetophenone, phloroglucinol, 3-(p-hydroxyphenyl) 
propionic acid, protocatechuic acid, 1-(3′-vinyl-phenyl)-
1,2-ethylene glycol, and isocoumarin derivatives (Kogan-
ezawa and Sakuma 1982; Natsume et  al. 1982; Wang 
et  al. 2014b; Zhen et  al. 2017). Four volatile substances 
(isoamyl alcohol, 4-ethyl-2-methoxyphenol, 2-phenyle-
thanol, and 4-ethylphenol) from Vm, were also toxic to 
apples (Li et  al. 2018). Two further compounds, ethyl 
p-hydroxyphenylpropionate and ethyl p-hydroxycinna-
mate, recently isolated from fermentation broths of Vm, 
exhibited toxicity against both host and non-host plants 
(Zhang et al. 2022). However, the target sites and mecha-
nisms of toxicity remain unclear (Fig. 3).

Some research has focused on the synthesis pathways 
of toxins. Fungal secondary metabolites can be divided 
into four categories: non-ribosomal peptides (NRPs), 
polyketides (PKs), terpenes, and alkaloids (Brakhage 
2013). Whole genome sequencing and transcriptome 
analysis have shown that Vm contains abundant gene 

clusters for the biosynthesis of PKs, NRPS, and other sec-
ondary metabolites, and most of them are significantly 
upregulated during Vm infection (Ke et al. 2014; Yin et al. 
2015). More importantly, the virulence of Vm decreased 
significantly when the non-ribosomal peptide synthase 
gene VmNRPS12 or CYP450 gene Vmcyp5, VmHbh1, and 
VmHbh4 were individually knocked out (Ma et al. 2016; 
Gao et  al. 2018; Meng et  al. 2021). VmLaeA regulates 
more than half of the secondary metabolite gene clusters 
and is essential to virulence (Feng et al. 2020); however, it 
is unclear whether the deletion of secondary metabolite 
genes affects the production of toxins and thus reduces 
virulence.

In addition to the main pathogenic factors mentioned 
above, important signal transduction and regulatory fac-
tors may also be involved in the virulence of Vm (Fig. 3). 
For example, G protein α subunit genes Gvm2 and Gvm3, 
mitogen-activated protein kinase gene VmPmk1, and vel-
vet protein family genes VeA and VelB, affect virulence 
by altering the expression of several CWDE genes, espe-
cially pectinase genes (Song et  al. 2017; Wu et  al. 2017, 
2018a). Transcription factor VmSeb1 affects the virulence 
of Vm by regulating the expression of melanin genes (Wu 
et al. 2018b). In addition, VmPacC and VmPma1 partici-
pate in virulence by acidification (Wu et al. 2018c; Zhang 
et al. 2023), and VmRab7, VmMon1, and VmCcz1 affect 
virulence through vacuolar fusion and autophagy (Zhang 
et al. 2021; Xu et al. 2022a).

Various apple germplasms and genes are 
associated with resistance to AVC
The cultivation of disease-resistant varieties is the most 
effective and economical way to control AVC. Although 
many apple varieties have been evaluated for resist-
ance to AVC by different methods (Bessho et  al. 1994; 
Wei et  al. 2010), no immune cultivar (or rootstock) has 
been found; however, there are significant differences 
in disease responses, and some germplasms show good 
levels of resistance, including Malus sikkimimensis, M. 
hupehensis, M. sieboldii, M. hupehensis, M. baccata cv. 
‘Kelegou Baccata LF’, M. domestica cv. ‘Aomori Early’, M. 
domestica cv. ‘Tsugalu’, and others (Abe et  al. 2007; Li 
et al. 1991; Liu et al. 1990, 2011; Zhang et al. 2019b).

Identification of disease resistance genes is key to 
creating Vm-resistant varieties. However, our knowl-
edge of the genetics of apple resistance to Vm is scant. 
Transcriptome analyses have suggested a large num-
ber of potential resistance-related genes involved in the 
regulation of resistance to AVC (Yin et al. 2016b; Wang 
et  al. 2022a). The transcription factors MdMYB88 and 
MdMYB124, pathogenesis-related MdPR10, receptor-
like kinase MdSRLK3, MdRLKT1 and MdRLKT2, and K 
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homology domain-containing protein MdKRBP4 func-
tion as positive regulatory factors in AVC response in 
transient overexpression analysis (Geng et al. 2020; Wang 
et al. 2021b; Xu et al. 2022; Han et al. 2022). In addition, 
apple receptor-like kinase gene MdMRLK2 and the BR-
signaling kinase gene MdBSK1, UDP-GLUCOSE: PHLO-
RETIN 2’-O-glucosyltransferase gene MdUGT88F1, and 
cyclic nucleotide-gated ion channel genes MdCN11 and 
MdCN19 were found to negatively regulate the resistance 
of apple to AVC (Zhou et al. 2019; Mao et al. 2021; Jing 
et  al. 2022; Wang et  al. 2022a). However, none of these 
genes has been used in developing an AVC-resistant 
apple variety.

Prevention of AVC based on new information
A detailed understanding of the disease dynamics is 
essential for the development of disease prevention and 
control technologies. In addition to diseased plant tis-
sues, branches and twigs pruned from trees are the main 
sources of overwintering of Vm in orchards. Conidia and 
ascospores released under rainfall or high humidity are 
dispersed by raindrops, wind, and insects (Wang et  al. 
1988). Moreover, conidia can be produced in enormous 
numbers and disseminated year-round, especially dur-
ing the flowering period (i.e., April in Shaanxi Province) 
(Du et al. 2013). Infection occurs most likely between the 
petal fall and the young fruit stage. Since infection mainly 
occurs through small cracks and ostiole, it is essential to 
protect the bark surface (Ke et al. 2013). Further spread 
of the pathogen within the tree following initial infec-
tion depends largely on the vigor of the tree (Chen et al. 
1982b; Tamura and Saito 1982; Du et al. 2013). AVC has 
latent infection features. More than 50% of infections can 
be asymptomatic, which is an important reason for the 

continued high incidence of the disease (Liu et al. 1979; 
Chen et  al. 1981; Zang et  al. 2012; Zhang et  al. 2018b; 
Meng et al. 2019; Xu et al. 2021). Thus, slowing disease 
development by maintaining tree vigor is also an impor-
tant measure in reducing AVC.

Previous control methods for AVC mainly focus on 
scraping to remove diseased tissues and applying vari-
ous chemical agents to the scraped wounds (Chen 1980; 
Chen et  al. 1981; Liu et  al. 1988; Liu et  al. 1992; Wang 
et  al. 2009; Jiao et  al. 2015; Yuan et  al. 2017). However, 
this does not solve the problem because Vm can infect 
the xylem. Thus, more active prevention is required. 
First, it is essential to reduce the pathogen source by 
removing dead trees or branches and pruning residues 
from orchards. These should be collected in the early 
spring and taken away from orchards to prevent further 
reproduction and spread of the pathogen. Next, it is criti-
cal to protect the bark surface with fungicides such as 
tebuconazole, difenoconazole, and pyraclostrobin after 
the peak period of pathogen dissemination and infec-
tion during the young fruit development stage (gener-
ally June–August) (Fig.  4) (Feng et  al. 2020; Jiao et  al. 
2015). If the disease is severe, the fungicide concentra-
tions should be appropriately increased and used for two 
years, with applications carried out 2–3 times at intervals 
of 10–15 days (Jiao et al. 2015; Wang et al. 2019). These 
high concentrations should not be applied to the leaves 
and fruits to avoid fungicide injury. Bio-control meas-
ures for AVC, such as the use of Saccharothrix yanglin-
gensis Hhs.015, Bacillus velezensis D4, or Bacillus subtilis 
E1R-J, have been explored (Gao et al. 2009; Li et al. 2016; 
Wang et al. 2016a; Yan et al. 2017; Liu et al. 2018, 2021b). 
Third, it is also important to reduce disease by delaying 
the extension of Vm in tree tissues. Measures that help 

Fig. 4  Annual production and dissemination of conidia and the critical periods for preventing infection. Conidia and ascospores of Vm released 
from the bark surface during rainfall or high humidity are dispersed by raindrops, wind, and insects. Conidia can be produced in enormous numbers 
and dispersed throughout the year, especially during the flowering season (i.e., April in Shaanxi Province). Therefore, it is critical to protect the bark 
surface with fungicides such as tebuconazole, difenoconazole, and pyraclostrobin after the peak period of pathogen dissemination and infection 
during young fruit development (generally June–August)
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to improve tree vigor can effectively suppress the exten-
sion of Vm. It has been found that high concentrations 
of potassium ions contribute to tree vigor and resistance-
enhancing effects of potassium slowing pathogen exten-
sion in the infected tissue (Peng et  al. 2016; Du et  al. 
2023). Finally, disease resistance levels can be improved 
by the application of biological fertilizers during the tree 
budding stage and resistance-inducing compounds such 
as chitosan oligosaccharide at young fruiting and fruit 
expansion stages (Darvill et  al. 1992; Creelman et  al. 
1997; Hu et al. 2015; Yang et al. 2022).

Conclusion and future perspectives
AVC is a destructive fungal disease that severely threat-
ens apple production in East Asian countries. This review 
summarizes our understanding of the pathogenic mecha-
nisms of AVC and discusses various approaches for the 
disease control. Compared to many other major crop 
diseases, little attention has been given to AVC. More 
basic research is required to provide a better theoretical 
basis for sustainable AVC control, which will demand a 
clearer understanding of the pathogenesis to identify the 
key pathogenic factors. Based on this, disease control 
can be achieved by silencing critical pathogenic factors 
through host- or spray-induced gene silencing to pre-
vent infection and spread of Vm within infection sites. 
At the same time, the specific pathogenic factors could 
also provide new targets for developing new agents. In 
terms of host plants, more research is needed to iden-
tify resistance genes, not just based on genetic markers 
of disease-resistant germplasms, but more importantly, 
based on the analysis of the host immune system regu-
lated by pathogenic factors of Vm. The use of disease 
resistance genes should be increased via molecular 
breeding technologies. Host susceptibility genes are 
now being discovered in various crop plants, and there 
may also be opportunities for their manipulation using 
genome editing technology in apple plants to improve 
resistance levels against AVC. In terms of disease control, 
it is of great significance to develop accurate monitoring 
and early warning technology for guiding disease preven-
tion. Meanwhile, newer technologies such as immunity 
induction agents and broad-spectrum bio-control agents 
with low ecological and environmental impact should be 
investigated and applied where possible.
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