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Abstract 

Rice commercial production is seriously threatened by various pathogens. Generally, the susceptibility (S) genes 
in plants are exploited by phytopathogens to promote infection. Dysfunction of S genes may result in recessively 
inheritable durable and broad-spectrum disease resistance. In this review, we summarize the latest research on S 
genes that encode proteins contributing to pathogen infection in rice. The S genes in rice are prospective tar-
gets of genome engineering to create resistance germplasms. However, the potential pleiotropic effects resulting 
from the deletion of S genes limit their application in resistance breeding. The newly developed CRISPR/Cas9-medi-
ated genome editing system offers a promising approach for developing transgene-free rice varieties with durable 
disease resistance.
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Background
To fend off pathogen attacks, plants have evolved sophis-
ticated defense mechanisms (Schie and Takken 2014). 
However, compatible pathogens can disarm multiple 
layers of plant defenses and successfully infect host 
plants (Trivedi et  al. 2020). Once this compatibility 
between hosts and pathogens is perturbed, plant-path-
ogen interactions become incompatible, rendering the 
plant immune to pathogens (Schie and Takken 2014). 
In plants, there are two layers of immune systems that 
become active upon the recognition of microbe- and/
or plant-derived molecules and pathogen effectors using 

extracellular and intracellular immune receptors, respec-
tively (Jones and Dangl 2006; Saijo et al. 2018). The first 
layer of immunity involves the perception of conserved 
microbial elicitors, referred to as pathogen-associated 
molecular patterns (PAMPs) and plant-derived dam-
age-associated molecular patterns (DAMPs) by cell 
membrane-bound pattern recognition receptors, lead-
ing to pattern-triggered immunity (PTI). PTI responses 
include a remarkable increase in pathogenesis-related 
(PR) gene expression, generation of reactive oxygen spe-
cies (ROS), and activation of mitogen-activated protein 
kinase (MAPK) cascades, among others (Couto and Zip-
fel 2016). The second layer of immunity involves resist-
ance (R) genes, whose products can directly or indirectly 
recognize pathogen effectors, thereby leading to effector-
triggered immunity (ETI) (Koseoglou et al. 2022). Never-
theless, pathogen effectors rapidly evolve to incapacitate 
ETI by escaping surveillance of R proteins (Jones and 
Dangl 2006).

The relationship between disease resistance and sus-
ceptibility is akin to two sides of the same coin (Eck-
ardt 2002). Any plant gene that facilitates a compatible 
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interaction with the pathogen is referred to as a suscep-
tibility (S) gene (Schie and Takken 2014; Koseoglou et al. 
2022). The first S gene Mlo cloned from barley in 1992 
is still in use and confers non-race-specific and durable 
resistance to powdery mildew in the field (Jørgensen 
1992). The concept of S genes was later proposed in 2002 
following the identification of the S gene PMR6 in Arabi-
dopsis thaliana (Eckardt 2002). Since then, hundreds of S 
genes from different plant species have been identified to 
be involved in three major molecular mechanisms: basic 
compatibility for host recognition and penetration, sus-
tained compatibility crucial for pathogen expansion and 
proliferation, and negative regulation of immune sign-
aling, including suppression of salicylic acid (SA) and 
jasmonic acid (JA) defense signaling, and PTI and ETI 
responses (Schie and Takken 2014; Deng et  al. 2020). 
Given that S genes are exploited by pathogens to promote 
disease development, it is plausible that disabling S genes 
could lead to relatively durable and potentially broad-
spectrum resistance in plants (Pavan et al. 2010; Koseo-
glou et al. 2022).

Rice (Oryza sativa L.), one of the most important sta-
ple food crops, feeds over 50% of the world’s popula-
tion. However, sustainable rice production is threatened 
by various diseases, such as fungal blast, sheath blight, 
bacterial leaf blight and leaf streak, rice false smut, and 
viral diseases, which collectively cause up to 30% yield 
loss. The most effective and environmentally friendly 
approach to managing these diseases is to utilize host 
resistance (Liu et  al. 2021). However, resistance breed-
ing mainly relies on R gene-mediated ETI, a race-specific 
“gene-for-gene” resistance that is readily broken down by 
rapidly evolved effectors (Deng et  al. 2020). Therefore, 
novel molecular breeding strategies, such as S gene edit-
ing, for the control of crop diseases are urgently needed 
(Pavan et al. 2010). To date, more than a hundred S genes 
have been identified in rice (Additional file 1: Table S1). 
Here, we focus on the progress in the identification of 
susceptibility genes in rice and their application in dis-
ease resistance improvement.

S genes facilitating basic compatibility in rice
Basic compatibility is implicated in the pre-penetration 
and penetration stages during pathogen infection. Dur-
ing the early infection, pathogens enter the hosts through 
natural openings or direct penetration by breaking physi-
cal barriers (Fig. 1a, b) (Zaidi et al. 2018). Natural open-
ings, such as stomata and hydathodes, are important for 
bacterial entry into the apoplast or vasculature (Lahaye 
and Bonas 2001; Panchal and Melotto 2017). Plants usu-
ally close their stomata upon contact with microbes, 
thus preventing pathogens entry into the leaves and 
subsequent colonization of host tissues. However, some 

bacterial pathogens secrete effectors that activate JA 
signaling, which in turn represses stomatal immunity 
(Arnaud and Hwang 2015; Panchal and Melotto 2017). 
For instance, the Xanthomonas oryzae pv. oryzicola (Xoc) 
effector XopC2 targets and phosphorylates OSK1, a uni-
versal adaptor protein of the Skp1-Cullin-F-box com-
plexes, thereby increasing its binding affinity to OsCOI1b 
to promote the ubiquitination and degradation of JAZ 
transcription repressors. JA signaling is therefore acti-
vated and enhances plant susceptibility by inhibiting 
stomatal defense in rice (Wang et al. 2021d). In addition, 
some genes involved in abscisic acid (ABA) accumula-
tion and stomatal closure regulate disease susceptibil-
ity through a distinct mechanism (Hu et  al. 2022). For 
instance, mutations in three ABA biosynthesis genes, 
OsABA1, OsABA2, and OsABA3, confer non-race-spe-
cific resistance to Xanthomonas oryzae pv. oryzae (Xoo). 
The stomata of osaba1 remain open even after pathogen 
infection, thus leading to water loss and restricted bac-
terial growth and spread (Zhang et al. 2018a). Moreover, 
disruption of OsSCAR2, encoding SCAR-LIKE PRO-
TEIN2, improves resistance to Xoo due to increased sto-
matal density and a higher number of semi-open stomata 
under normal conditions (Rao et  al. 2015; Zhang et  al. 
2018a). Therefore, stomatal defense is disabled by patho-
gens through different mechanisms.

Unlike phytopathogenic bacteria, many biotrophic fila-
mentous pathogens invade host plants using mechani-
cal pressure exerted from melanized appressoria to 
penetrate the cell wall and form haustoria, a specialized 
feeding structure that depends on membrane dynam-
ics. A few S genes have been identified to be involved in 
the early infection steps and in the formation of mem-
brane structures surrounding haustoria (Schie and Tak-
ken 2014). The well-known example is the S gene Mildew 
resistance Locus O (MLO), which is required for pow-
dery mildew penetration into epidermal cells (Appiano 
et  al. 2015). Small G proteins (Rho-GTPase and RAC/
ROP) are required for cytoskeleton dynamics and vesi-
cle trafficking. Three RAC/ROP proteins in rice, OsRacB, 
OsRac4, and OsRac5, have been identified as suscep-
tibility factors for Magnaporthe oryzae infection (Jung 
et al. 2006; Chen et al. 2010). Similar to barley HvRacB, 
all of them are localized to the plasma membrane and 
promote susceptibility by regulating cytoskeleton reor-
ganization to form extrahaustorial membrane (Kawano 
et al. 2014). Mutation of these S genes can prevent pen-
etration of adapted pathogens via hampering the for-
mation of haustoria (Opalski et  al. 2005). Furthermore, 
phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) 
enriched in biotrophic interfacial complex (BIC) and 
extra-invasive hyphal membrane (EIHM) structures, 
which are involved in effector secretion and fungal 
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infection, is a disease-susceptibility factor. The cytidine 
diphosphate diacylglycerol (CDP-DAG) is synthesized 
by CDP-DAG synthases (CDSs) and is then used to pro-
duce PtdIns(4,5)P2 (Shimada et al. 2019; Qin et al. 2020). 
Recently, Sha et al. identified an S gene RESISTANCE TO 

BLAST1 (RBL1) encoding a CDP-DAG synthase. Muta-
tion of RBL1 confers broad-spectrum resistance to vari-
ous pathogens (Sha et al. 2023). In addition, the change 
in cell wall structure modulates plant resistance to bacte-
rial blight. For instance, mutation of OsPG1 encoding a 

Fig. 1  Susceptibility genes involved in basic compatibility and sustained compatibility during the host-pathogen interactions. a, b Examples 
of the S genes involved in the early infection process. OSK1, OsABA1/OsABA2/OsABA3, and OsSCAR2 negatively regulate stomatal immunity, 
stomatal conductance, and stomatal density, respectively. OsPG1, OsRBL1, and OsRacB/OsRac5/OsRac4 are involved in cell wall degradation, 
effector secretion, and formation of the extrahaustorial membrane, respectively. PA, phosphatidic acid; CDP-DAG, cytidine diphosphate 
diacylglycerol; PI, phosphatidylinositol; BIC, biotrophic interfacial complex; EIHM, extra-invasive hyphal membrane. c Examples of the S genes 
involved in compatible interaction during post-penetration stages of infection. OsPIP1;3 facilitates the secretion of the effector PthoXo1 
into the host cytosol. OsImpα1a and OsImpα1b contribute to the translocation of bacterial TALEs into rice nuclei. The promoters of S genes, 
OsSWEET11, OsSWEET13, OsSWEET14, OsTFX1, OsERF123, and OsTFIIγ1, are targeted by various effectors. Arrows indicate positive regulation; 
the blunt-ended line indicates negative regulation. Created with BioRender (www. BioRender.com)
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polygalacturonase causes increased contents of cellulose, 
pectin, and hemicellulose, thereby enhancing immune 
responses and resistance against Xoo (Cao et al. 2021). In 
summary, the genes that facilitate pathogen penetration 
through various mechanisms are a category of S genes.

S genes facilitating sustained compatibility in rice
Sustained compatibility is implicated in post-penetration 
stages during infection. After successfully colonizing host 
cells, some pathogens manipulate host genes to acquire 
nutrients for proliferation and/or suppress immunity 
through the secreted effectors to sustain the compatible 
interaction (Fig. 1c). The SWEET (Sugars will eventually 
be exported transporters) family proteins play important 
roles in fructose and sucrose transport and are among 
the most extensively investigated classes of S factors. 
Three SWEET genes in rice (OsSWEET11, OsSWEET13, 
and OsSWEET14) have been identified as the targets of 
the Xoo-secreted transcription activator-like effectors 
(TALEs) (Yang et  al. 2006; Antony et  al. 2010; Römer 
et al. 2010; Streubel et al. 2013; Zhou et al. 2015; Xu et al. 
2019; Luo et  al. 2021; Wu et  al. 2022a). TALEs directly 
bind to effector-binding elements (EBEs) located on the 
promoter regions of SWEET genes and activate gene 
expression (Römer et al. 2010). These sugar transporters 
provide nutrients to Xoo and enhance rice susceptibility. 
Furthermore, SWEETs can function in copper transport. 
OsSWEET11 interacts with two copper transporters, 
COPT1 and COPT5, to form a copper transporter com-
plex, which contributes to removing copper ions from 
xylem vessels and thereby supports Xoo multiplication 
(Yuan et  al. 2010). In addition, TALEs modulate the 
expression of other susceptibility genes. For instance, the 
promoters of OsTFX1 and OsERF123 encoding transcrip-
tion factors and OsTFIIγ1 encoding the small subunit of 
the transcription factor IIA are the targets of pthXo6, 
TalB, and pthXo7 in Xoo, respectively (Sugio et al. 2007; 
Tran et al. 2018).

It is assumed that bacteria take advantage of host pro-
teins to form secretion systems by interacting with bac-
terial translocators (Li et al. 2019). The Xoo translocator 
Hpa1 interacts with aquaporin OsPIP1;3 to facilitate 
the secretion of the effector PthoXo1 into host cytosol 
(Wang et  al. 2018b). When OsPIP1;3 is silenced in rice, 
Xoo no longer delivers the effectors into the cytosol of 
rice cells during infection and the ospip1;3 mutant exhib-
its resistance to Xoo (Li et al. 2019; Zhang et al. 2019). In 
addition, the nucleocytoplasmic transporters OsImpα1a 
and OsImpα1b interact with the secreted TALEs and 
mediate TALE translocation into cell nuclei. Down-regu-
lation of OsImpα1a and OsImpα1b disables the transloca-
tion of bacterial TALEs into rice nuclei, where they target 
SWEET genes, thus leading to broad-spectrum resistance 

against TALE-secreting bacteria (Hui et al. 2019). Collec-
tively, these genes involved in effector translocation rep-
resent another type of S genes.

Negative regulation of plant immunity in rice
Phytohormone in disease susceptibility
Plant defense hormones, such as SA, JA, and ethylene, 
play important roles in regulating immune responses 
(Robert-Seilaniantz et  al. 2011; Yang et  al. 2015). SA 
contributes to resistance against hemibiotrophic and 
biotrophic pathogens and plays critical roles in amplify-
ing local immune responses and establishing systemic 
acquired resistance (Peng et al. 2021). SA is synthesized 
mainly through the isochorismate synthase (ICS) and 
phenylalanine ammonia-lyase (PAL) pathways (Maruri-
López et al. 2019; Zhang and Li 2019; Peng et al. 2021). 
The levels of active SA are also regulated by SA modi-
fication. The proteins that are involved in SA catabo-
lism may enhance plant susceptibility (Fig.  2a). The 
salicylic acid 3-hydroxylase (S3H/DLO1) and 5-hydroxy-
lase (S5H/DMR6) hydroxylate SA into 2,3-hydroxyl and 
2,5-hydroxyl benzoic acid (2,3-DHBA and 2,5-DHBA), 
respectively, resulting in decreased SA levels and SA-
mediated defense responses. The transgenic plants over-
expressing OsS5H1, OsS5H2, and OsS5H3, which have 
dramatically decreased SA levels and increased 2,5-
DHBA contents, are more susceptible to fungal blast and 
bacterial blight diseases (Zhang et  al. 2022c; Liu et  al. 
2023b). In rice, OsSAH3 (SA hydroxylase 3) only has 
SA 5-hydroxylase (SA5H) activity, while OsSAH2 shows 
both SA3H and SA5H activities. Both ossah2 and ossah3 
mutants confer broad-spectrum disease resistance to 
hemibiotrophic and necrotrophic pathogens (Liang et al. 
2022). OsF3H03g encoding 2-oxoglutarate-dependent 
dioxygenase negatively regulates resistance to Xoc and 
Xoo via directly reducing SA levels. OsUGT74H4, a uri-
dine diphosphate glycosyltransferase protein, may gly-
cosylate and inactivate SA, thus promoting susceptibility 
to bacterial leaf streak (Wu et al. 2022b). By contrast, the 
phenylalanine ammonia-lyases (PALs) activate immune 
responses by converting Phe to trans-cinnamic acid, an 
alternative precursor of SA (Zhang and Li 2019). Disrup-
tion of Bsr-k1 leads to transcriptional activation of mul-
tiple OsPAL genes and confers broad-spectrum disease 
resistance in rice (Zhou et al. 2018). Therefore, the genes 
involved in SA catabolism and modification belong to a 
category of S genes.

JA, a lipid-derived defense hormone, functions as an 
important signaling molecule to prevent plant infec-
tion by necrotrophic pathogens (Fig.  2a). The isoleu-
cine-conjugate of jasmonic acid (JA-Ile) is perceived 
by coronatine-insensitive 1 (COI1), which mediates 
26S proteasome-dependent degradation of JAZ (JA 
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Fig. 2  Susceptibility genes involved in negative regulation of plant immunity. a Examples of the S genes involved in hormone-mediated defenses. 
BSR-K1, OsSAH2, OsSAH3, OsS5H1, OsS5H2, OsS5H3, OsF3H03g, OsUGT74H4, PBI1, OsARF8, and NRRB suppress SA-mediated defenses. OsBZR1, 
OsGCNT, OsNINJA1, OsJAZ4, OsJAZ11, OsHd3a, GF14c, OsFD1, OsMED25, OsWRKY42, and OsWRKY72 suppress JA-mediated defenses. OsALDH2B1 
suppresses both JA- and SA-mediated defenses. EDR1 suppresses JA- and SA-mediated defenses by activation of ethylene biosynthesis. OsGA20ox3 
and OsGID1, involved in GA-mediated signaling, suppress the expression of defense-related genes. b Examples of the S genes encoding E3 ligases 
involved in disease susceptibility. The E3 ligases SPL11/ PUB13, OsPUB12, EBR1, and OsCUL3a inhibit immune responses through degrading 
the substrate proteins SPIN6, OsRLCK176, OsBAG4, and OsNPR1, respectively. ANIP1 negatively regulates resistance to fungal blast via promoting 
the degradation of OsWRKY62. c Examples of the S genes encoding protein kinases and phosphatases. OsCPK18, OsMAPK5, SPL36, OsMPK6, 
OsMPK15, OsCPK4, OsCPK12, PWL1, OsSPL26, RLK20, RLK21, and RLK22 are protein kinases. OsMKP1 is a phosphatase. d Examples of the S 
genes encoding transcription regulators. ONAC083, OsASR6, OsMYB102, OsMYB108, OsWRKY28, OsWRKY76, OsTGA5, OsNAC2, and BSR-D1 are 
transcription factors. OsVQ25 is a cofactor, inhibiting the activity of transcription factor OsWRKY53. HDT701, OsHDA701, HDA705, and OsSRT2 
are involved in histone modifications. e Examples of microRNA genes involved in disease susceptibility. Arrows indicate positive regulation; 
the blunt-ended line indicates negative regulation. Created with BioRender (www. BioRender.com)
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ZIM-domain) family proteins. JAZ proteins function 
as transcriptional repressors of the JA signaling path-
way and are involved in disease susceptibility caused 
by necrotrophic pathogens (Berens et  al. 2017). For 
instance, JA- and ethylene-mediated responses are con-
stitutively activated in Arabidopsis thaliana jaz decu-
ple mutant, which shows resistance to a necrotrophic 
fungal pathogen (Guo et  al. 2018). OsJAZ4 negatively 
regulates defenses against viral infection by suppress-
ing JA signaling in rice (He et  al. 2020). Furthermore, 
some proteins mediate rice susceptibility by transcrip-
tionally regulating JAZ genes. OsFD1, a basic leucine 
zipper (bZIP) transcription factor in rice, binds to the 
promoters of JAZ genes and activates their expression. 
OsHd3a collaborating with GF14e (G-box factor 14-3-
3) enhances OsFD1-mediated transcriptional activation 
of JAZ gene expression, thus attenuating rice resistance 
to Xoo and Xoc (Ke et al. 2019). NOVEL INTERACTOR 
OF JAZ (NINJA), a JAZ-interacting adaptor protein, 
negatively regulates OsMYC2-mediated JA signaling and 
resistance to Xoo in rice (Kashihara et al. 2019). Besides, 
a novel Oryza sativa beta-1,6-N-acetylglucosaminyl 
transferase (OsGCNT) acts as a negative regulator of 
defense responses and immunity-associated premature 
leaf senescence probably by changing the JA metabolic 
pathway (Xu et  al. 2018). OsBZR1, a positive regula-
tor of rice BR signaling, negatively regulates resistance 
to Xoo by suppressing JA signaling (Ke et al. 2020). The 
aldehyde dehydrogenase OsALDH2B1 also functions as 
a transcriptional regulator of several biological processes 
mediated by brassinolide, G protein, JA, and SA signal-
ing pathways. The osaldh2b1 knockout mutant exhib-
its enhanced broad-spectrum resistance to pathogens 
(Ke et  al. 2020). MEDIATOR25 (OsMED25), a subunit 
of the multiprotein complex in rice, negatively regulates 
resistance to bacterial blight. The expressing levels of 
OsMYC2-independent JA-responsive defense-related 
genes were upregulated in the osmed25 mutant (Suzuki 
et al. 2022).

Ethylene, a third classical defense hormone, positively 
or negatively regulates disease resistance depending on 
the nutrient types and environmental conditions (De 
Vleesschauwer et al. 2013). Rice EDR1 (enhanced disease 
resistance), encoding a putative MAPK kinase kinase, is 
essential for susceptibility to bacterial diseases through 
promoting the synthesis of ethylene, which in turn sup-
presses SA- and JA-associated defense signaling (Shen 
et  al. 2011). In addition, other phytohormones, such as 
gibberellins (GAs), is also involved in defense responses 
(Fig. 2a) (Berens et al. 2017). The gibberellin 20-oxidase 
(GA20ox) catalyzes consecutive steps of oxidation in the 
late part of the GA biosynthetic pathway. The RNA inter-
ference lines of gene OsGA20ox3 have higher resistance 

to rice blast and bacterial blight and increased expression 
of defense-related genes (Qin et al. 2013). The GA recep-
tor gene GID1 mutant shows enhanced resistance to M. 
oryzae and has more PBZ1 and PR10 proteins (Tanaka 
et al. 2006).

Role of E3 ligases in disease susceptibility
Ubiquitination, a common type of post-translational 
protein modification, is involved in the selective degra-
dation of proteins in eukaryotic cells. The modification 
is sequentially catalyzed by three kinds of enzymes: E1 
ubiquitin-activating enzyme, E2 ubiquitin-conjugating 
enzyme, and ubiquitin E3 ligase (Vierstra 2009; Buetow 
and Huang 2016). The ubiquitin–proteasome system 
(UPS) often contributes to enhanced disease susceptibil-
ity by degrading positive regulators of immune signal-
ing in plants (Fig. 2b) (Vierstra 2009; Buetow and Huang 
2016; Wang et al. 2022b). For instance, multiple ubiqui-
tin E3 ligases are negative regulators of rice immunity. 
The plant U-box (PUB) E3 ligase SPL11/PUB13 func-
tions in tandem with the SPL11-interacting protein 6 
(SPIN6), a Rho GTPase-activating protein, to negatively 
modulate the small GTPase OsRac1-mediated immune 
signaling (Yin et al. 2000; Liu et al. 2015). Another PUB 
E3 ligase, OsPUB12, negatively regulates immunity 
by interacting with and ubiquitinating OsRLCK176 to 
promote its degradation in rice (Mou et  al. 2024). The 
mutation of a RING-type E3 ligase gene enhanced blight 
and blast resistance 1 (EBR1) causes enhanced broad-
spectrum resistance to bacterial and fungal diseases. 
EBR1 directly interacts with and degrades OsBAG4, 
which is required to trigger programmed cell death 
(PCD) and enhances resistance to pathogen infection 
(You et  al. 2016). OsCUL3a, a component of a Cullin3-
based RING E3 ubiquitin ligase (CRL3), not only attenu-
ates PAMP-induced ROS burst and PR gene expression 
but also negatively regulates resistance to M. oryzae and 
Xoo by interacting with and degrading OsNPR1 (NON-
EXPRESSOR OF PATHOGENESIS-RELATED GENES 
1) in rice (Liu et al. 2017). In addition, some UPS regu-
lators negatively regulate plant immunity. For instance, 
AvrPi9-interacting protein (ANIP1), a rice ubiquitin-like 
domain-containing protein (UDP), negatively modulates 
resistance against the rice blast fungus via facilitating 26S 
proteasome-mediated degradation of OsWRKY62 (Shi 
et al. 2023b). OsDjA6, a chaperone DnaJ protein, directly 
associates with the E3 ligase OsZFP1 to assist with the 
UPS for protein quality control in eukaryotes. Silencing 
of OsDjA6 enhances rice resistance to M. oryzae through 
activating ROS accumulation and expression of PR genes 
(Zhong et al. 2018). Therefore, the genes involved in pro-
tein ubiquitination represent a group of S genes.
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Protein kinases and phosphatases in disease susceptibility
Reversible protein phosphorylation mediated by vari-
ous types of protein kinases and phosphatases plays a 
key role in regulating plant immunity (Park et  al. 2012; 
Mithoe and Menke 2018; Zhang et  al. 2018b; Kong 
et  al. 2021). Multiple groups of protein kinases, such as 
calcium-dependent protein kinases (CDPKs or CPKs), 
mitogen-activated protein kinases (MAPKs or MPKs), 
and receptor-like kinases (RLKs), positively or nega-
tively regulate plant defenses (Fig. 2c) (Berriri et al. 2012; 
Kong et  al. 2012; Schie and Takken 2014; Wang et  al. 
2018a). OsCPK4 negatively regulates resistance to bac-
terial blight and blast disease by promoting the degrada-
tion of OsRLCK176 (Wang et al. 2018a). Overexpression 
of OsCPK12 leads to a lower level of H2O2 accumula-
tion and enhances susceptibility to the rice blast fungus 
due to the decreased expression level of NADPH oxi-
dase gene OsRBOHI and increased expression levels of 
OsAPx2 and OsAPx8 encoding ROS scavenging enzymes 
(Asano et  al. 2012). OsCPK18 is a negative regulator of 
defense gene expression and represses susceptibility to 
fungal blast in rice through phosphorylating and activat-
ing OsMAPK5 (Xie et  al. 2014). Although the activated 
MAPK cascade is one of the early defense responses, 
not all MAPKs play positive roles in PTI. For example, 
OsMAPK5, OsMPK6, and OsMPK15 act as negative reg-
ulators of resistance to both fungal and bacterial patho-
gens (Xiong and Yang 2003; Hong et al. 2019; Wang et al. 
2021a; Zheng et  al. 2022a), while OsMPK17 only nega-
tively regulates XA21-mediated resistance to Xoo (Zhu 
et al. 2022). On the other hand, MAPK cascades that pos-
itively regulate plant immunity can be repressed by the 
MAPK phosphatases (MKPs). OsMKP1, which targets 
and dephosphorylates OsMAPK6, positively regulates 
vascular defense against Xoo through activating lignin 
biosynthesis while negatively regulating resistance to the 
mesophyll pathogen Xoc through inhibiting SA and ROS 
signaling pathways (Lin et al. 2022). Likewise, some RLKs 
positively modulate plant immunity, while others nega-
tively regulate defense responses. Individual mutations 
of RLK20, RLK21, and RLK22 confer enhanced broad-
spectrum resistance against multiple Xoo strains by 
promoting RBOHD-mediated H2O2 production in rice 
(Mei et  al. 2022). Premature withered leaf 1 (PWL1), a 
G-type lectin receptor-like kinase, also suppresses resist-
ance to X. oryzae in rice (Xu et al. 2023). The deletion of 
RLK genes OsSPL26 and SPL36 causes spontaneous leaf 
lesions, indicating that these kinases negatively regulate 
cell death and immunity in rice (Rao et  al. 2021; Shang 
et  al. 2022). Interestingly, NRRB, a receptor-like cyto-
plasmic kinase (RLCK), suppresses immunity to bacte-
rial leaf streak (BLS) in rice (Guo et al. 2014). However, 
the molecular mechanisms through which receptor-like 

kinases negatively regulate plant immunity remain largely 
unclear.

Transcription regulators in disease susceptibility
Immune homeostasis is mediated by different types 
of transcription factors (TFs) in the WRKY, AP2/ERF 
(apetala2/ethylene-response element binding factor), 
bHLH (basic-helix-loop-helix), TGA (TGACG-bind-
ing), MYB (v-myb avian myeloblastosis viral oncogene 
homolog), NAC (for NAM, ATAF1/2, and CUC2) fami-
lies, and so on (Fig.  2d) (Tsuda and Somssich 2015). 
WRKY proteins belong to one of the largest TF families 
in plants and balance plant immunity (Jiang et al. 2017). 
OsWRKY28 and OsWRKY62 function as PAMP-respon-
sive transcriptional repressors to inhibit rice resistance 
against blast fungus and Xoo, respectively (Peng et  al. 
2008; Chujo et  al. 2013). Likewise, OsWRKY42 and 
OsWRKY72 suppress JA signaling and negatively regu-
late defense responses to M. oryzae and Xoo, respectively 
(Cheng et  al. 2015; Hou et  al. 2019). Overexpression of 
OsWRKY76 in rice leads to a significantly increased sus-
ceptibility to M. oryzae through suppressing the expres-
sion of PR and phytoalexin synthetic genes (Yokotani 
et al. 2013). The auxin response factors (ARFs) represent 
another family of transcription factors, many of which 
act as susceptibility factors for diverse diseases in rice. 
For instance, OsARF8, OsARF18, and OsARF22 nega-
tively regulate broad-spectrum resistance against M. ory-
zae and Xoo (Feng et al. 2022). Interestingly, OsARF8 also 
negatively contributes to disease resistance to the necro-
trophic pathogen Rhizoctonia solani (Feng et al. 2022).

Other types of transcription factors have been succes-
sively identified as negative immune regulators (Fig. 2d). 
OsASR6, a plant-specific ASR (abscisic acid, stress, and 
ripening) transcription factor, alleviates resistance to bac-
terial leaf blight and leaf streak diseases by suppressing 
OsCIPK15 expression in rice (Guo et al. 2022). OsTGA5 
functions as a negative regulator of rice resistance against 
blast fungus by repressing the expression of PR genes and 
the accumulation of endogenous SA (Niu et  al. 2022). 
The NAC transcription factor ONAC083 negatively con-
tributes to rice immunity against M. oryzae by directly 
activating the transcription of OsRFPH2-6 encoding a 
RING-H2 finger protein that negatively regulates rice 
resistance to M. oryzae (Bi et al. 2023). OsNAC2 acts as 
a repressor of bacterial leaf blight resistance by inhibiting 
the expression of SA biosynthesis-related genes in rice 
(Zhong et  al. 2024). When OsMYB102 and OsMYB108 
are knocked out, the mutant plants generate more lignin 
and exhibit increased resistance to Xoo (Lin et al. 2022). 
Inhibited expression of rice bsr-d1, encoding a C2H2-
type transcription factor, increases hydrogen peroxide 
accumulation and enhances resistance to M. oryzae (Li 
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et al. 2017a; Zhu et al. 2020b). OsERF922 disruption con-
fers broad-spectrum resistance to rice blast, bacterial 
blight and leaf streak diseases (Wang et  al. 2016; Zhou 
et  al. 2022). Interestingly, VASCULAR PLANT ONE 
ZINC-FINGER 1 (OsVOZ1), a plant specific one-zinc-
finger-type transcription factor, negatively regulates PTI 
and enhances susceptibility to M. oryzae, but positively 
contributes to ETI signaling (Wang et al. 2021c).

Some cofactors have been identified to be suppres-
sors of defense responses through inhibiting the tran-
scriptional activity or regulating the stability of TFs in 
rice (Fig.  2d). OsVQ25, a valine-glutamine (VQ) motif-
containing protein, hampers species-non-specific broad-
spectrum resistance by interaction with OsWRKY53 and 
repression of its transcriptional activity (Hao et al. 2022). 
PBI1, comprised of a four-helix bundle, plays a nega-
tive role in defense responses to Xoo by interacting with 
and inhibiting the transcription activity of WRKY45, 
a key regulator of rice immunity (Ichimaru et  al. 2022). 
Additionally, chromatin modifications such as histone 
acetylation play crucial roles in the regulation of defense 
gene expression (Fig. 2d). Multiple histone deacetylases, 
including HDT701, OsHDA701, HDA705, and OsSRT2, 
negatively regulate rice immunity against Ustilaginoidea 
virens, M. oryzae, and Xoo (Ding et al. 2012; Chen et al. 
2021, 2022a, 2024). Collectively, more and more tran-
scription factors and regulators are identified to promote 
disease susceptibility.

MicroRNAs in disease susceptibility
In response to pathogen attacks, plants have developed 
a multiple-layered immune system, composed of pro-
teins and RNAs, to defend against pathogens (Song 
et  al. 2019). Especially, microRNAs function as impor-
tant regulators to inhibit the expression of target genes 
by DNA methylation, mRNA cleavage, and translational 
inhibition after binding to the target DNA or RNA sites 
(Fig.  2e) (Song et  al. 2021b; Zhan and Meyers 2023). 
Until now, at least 18 microRNAs and/or small interfer-
ing RNA (siRNA) have been identified as negative regu-
lators of disease resistance by targeting defense genes in 
rice, including miR167d, miR168, miR11117, miR1873, 
miR396, miR169, miR156, miR529, miR319, miR164a, 
miR1871, miR439, miR1432, miR530, miR535, miR444.2, 
miR2118, and siR109944 (Li et al. 2017b, 2021b, c, 2022b, 
Chandran et al. 2018; Zhang et al. 2018c, 2020; Qiao et al. 
2020; Zhao et al. 2020; Zhou et al. 2020; Lu et al. 2021; 
Wang et al. 2018c, 2021b; Zhang et al. 2022b; Feng et al. 
2023; Gao et  al. 2023; Hui et  al. 2023; Zhu et  al. 2023). 
Generally, these microRNA and siRNA genes are also 
candidate S genes for gene editing to breed resistant 
varieties.

Other proteins in disease susceptibility
Hypersensitive responses (HR), a type of programmed 
cell death, prevent pathogens from spreading to unin-
fected cells (Coll et  al. 2011). Lesion mimic mutants 
(LMMs) display spontaneous immune responses and 
HR-like necrotic lesions without pathogens invasion 
(Yan et al. 2022; Zhang et al. 2022a). LMMs are typically 
generated by the disruption of genes encoding potent 
suppressors of plant immunity (Shi et  al. 2023a). The 
identified LMM genes in rice encode various functional 
proteins and are involved in various immune responses, 
such as ROS generation, SA signaling pathway, activa-
tion of defense-related genes, chlorophyll metabolism, 
and chloroplast development. For example, eukaryotic 
elongation factor 1 alpha (eEF1A) plays an important 
role in protein translation and has been implicated in 
PCD (Wang et  al. 2017; Li et  al. 2020). Two eukaryotic 
translation elongation factor 1A like proteins LMM5.1/
SPL33 and LMM5.4 negatively regulate cell death and 
disease resistance to Xoo and M. oryzae, as the gene 
mutants exhibit constitutively activated basal defenses, 
including PR gene expression and ROS production in 
rice (Wang et al. 2017; Zhao et al. 2017). Two conserved 
eukaryotic release factor 1 proteins, LML1 and OsPEL-
OTA (originally termed HM47), also negatively regu-
late cell death and disease resistance in rice by forming 
complexes with LMM5.1/SPL33 (Feng et  al. 2013; Qin 
et al. 2018; Zhang et al. 2018d). In addition, RLIN1 (puta-
tive coproporphyrinogen III oxidase) (Sun et  al. 2011), 
LMM8 (encoding protoporphyrinogen IX oxidase) (Zhao 
et  al. 2023), SPL32 (a ferredoxin-dependent glutamate 
synthase, Fd-GOGAT) (Sun et  al. 2017), and SDR7-6 (a 
short-chain alcohol dehydrogenase/reductase family pro-
tein) (Zheng et al. 2022b) participate in PCD by regulat-
ing the metabolism of chlorophyll and glutamate. The 
proteins associated with transcription and post-transla-
tional modification also contribute to cell death, includ-
ing OsLSD1 (zinc finger protein) (Wang et  al. 2005), 
OsUbc13 (ubiquitin-conjugating enzyme) (Liu et  al. 
2023a), OsUBP2 (ubiquitin-specific protease 2) (Jiang 
et  al. 2022), and SPL5 (RNA splicing protein) (Jin et  al. 
2015). Mutation of LMM genes causes intense immune 
responses, which may affect normal plant growth. There-
fore, precise gene editing of LMM genes is necessary to 
utilize them for resistance breeding.

In addition, some unclassified proteins negatively regu-
late plant immunity. For instance, phytochrome B (PhyB) 
negatively regulates resistance to rice sheath blight 
caused by R. solani through interacting with and inhibit-
ing BZR1-NAC028-CAD8B signaling in rice (Yuan et al. 
2022). Ca2+, as a second messenger, rapidly accumulates 
in the cytoplasm and is perceived by Ca2+ sensors to acti-
vate immune responses. However, Ca2+ sensor ROD1 
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(RESISTANCE OF RICE TO DISEASES1) facilitates 
ROS scavenging and suppresses rice immunity through 
directly interacting with a catalase CatB and enhancing 
its activity (Gao et al. 2021). In addition, such proteins as 
receptor-like protein OsBAP1 (Wang et  al. 2023a), cop-
per metallochaperone heavy metal-associated plant pro-
tein04 (OsHPP04) (Song et al. 2021a; Huang et al. 2023), 
P-loop NTPase OsYchF1 (Cheung et al. 2016), OsFKBP12 
(a rice immunophilin homolog) (Cheung et  al. 2020), 
and nodule inception (NIN)-like protein OsNLP2 (Chen 
et  al. 2022b) in rice also negatively modulate immunity 
against pathogens, but the underlying mechanisms are 
yet unclear.

Engineering S genes for disease resistance in rice
In contrast to traditional breeding for disease resistance, 
which is time-consuming and laborious, genome edit-
ing techniques have been successfully developed as fast, 
convenient, and effective tools to introduce precise and 
predictable genome modifications into plant genomes to 
enhance resistance against a range of pathogens (Li et al. 
2022a; Bishnoi et al. 2023). During the past 30 years, meg-
anucleases, transcription activator-like effector nucleases 
(TALENs), zinc-finger nucleases (ZFNs), and clustered 
regularly interspaced palindromic repeats (CRISPR)/
CRISPR-associated protein 9 (Cas9) system have been 
developed for genome editing (Gao 2021). Among these 
techniques, CRISPR/Cas9 has gained popularity due to 
its ease of use, affordability, and high success rate in engi-
neering crop genomes (Zhu et al. 2020a; Gao 2021; Wang 
et  al. 2022a; Sha et  al. 2023). In the CRISPR/Cas9 sys-
tem, Cas9 targets specific genomic loci guided by a single 
guide RNA (sgRNA) and cleaves double-stranded DNA, 
resulting in DNA double-strand breaks (DSBs) at target 
sites. This process triggers nonhomologous end joining 
(NHEJ) repair pathways, during which nucleotide dele-
tions or insertions are often introduced into the target 
genes and thereby cause frameshift mutations (Li et  al. 
2021a). Therefore, the CRISPR/Cas9 technology makes 
it easy to knock out S genes, thus conferring broad-
spectrum and durable disease resistance. To date, the 
CRISPR/Cas9 system has been widely used to improve 
major crops, such as rice, maize, and wheat (Oliva et al. 
2019). One of the most representative and success-
ful examples is the susceptibility gene RBL1 in rice. The 
loss-of-function mutant of RBL1, in which 29-bp deletion 
partially overlaps the ninth exon–intron junction and 
causes an in-frame deletion of the ninth exon, exhibits 
resistance to M. oryzae and Xoo, but has an about 20-fold 
yield loss. However, the rbl1Δ12 line with a 12-bp deletion 
in the second exon of RBL1 generated via CRISPR/Cas9 
technology displays broad-spectrum disease resistance 
to multiple pathogens without evident yield penalty (Sha 

et al. 2023). Moreover, individual disruptions of OsSRT2, 
OsBDR1, and OsPUB12 by CRISPR/Cas9 also confer 
resistance to multiple rice pathogens (Wang et al. 2023b; 
Chen et al. 2024; Mou et al. 2024). In addition, CRISPR/
Cas9 technology can also be used to edit the promoters 
of candidate S genes for the development of resistant rice 
varieties. For instance, OsSWEETs, potential susceptibil-
ity genes, are required for sugar efflux and are involved 
in seed filling and male fertility, respectively (Yang et al. 
2018; Wu et al. 2022a). The mutations of EBEs in the OsS-
WEET11, OsSWEET13, OsSWEET14, and OsSULRT3;6 
promoters generated through CRISPR/Cas9 prevent 
binding by TAL effectors and result in rice resistance to 
bacterial pathogens without yield penalty (Oliva et  al. 
2019; Xu et al. 2021a).

Although a variety of S genes have been identified in 
rice, not all can be directly engineered to create disease-
resistant cultivars. Some S genes are required for patho-
gen invasion and plant physiology (Schie and Takken 
2014). The major challenge to utilize S genes in resistance 
breeding is a tight linkage between adverse pleiotropic 
effects and disease resistance (Koseoglou et  al. 2022; 
Bishnoi et  al. 2023). However, this difficulty might be 
solved by precise genome editing instead of completely 
disrupting the S genes. Recently, CRISPR/Cas9-based 
precise genome editing tools, such as base editor and 
prime editor, have been invented to allow for transition, 
transversion, and targeted DNA deletions and insertions 
(Gao 2021; Li et  al. 2021a). Base editors mainly rely on 
a catalytically impaired Cas9 (nCas9 D10A) nuclease for 
targeting specific sites and a deaminase acting on single-
stranded DNA (ssDNA) so that the editors can create 
point mutations rather than DSBs (Rees and Liu 2018). 
Cytosine base editors (CBEs) and adenine base editors 
(ABEs) are two major types of base editors. The cyti-
dine deaminase in CBE and deoxyadenosine deaminase 
in ABE catalyze the transitions of C to T and A to G at 
ssDNA at target sites, respectively (Molla et al. 2021). The 
base editors have been increasingly used to improve vari-
ous crop plants, including rice. Pi-d2 in rice encodes a 
receptor-like kinase and confers gene-for-gene resistance 
against the fungal blast strain ZB15 (Chen et  al. 2006). 
The amino acid substitution at position 441 causes Pi-d2 
to lose resistance to blast disease. The improved base edi-
tors introduce a G to A mutation in endogenous pi-d2, 
which rescues its biological functions (Ren et  al. 2018). 
Similarly, the mutation of ROD1 encoding a Ca2+-sensor 
confers resistance against the bacterial pathogen Xoo 
and fungal pathogens M. oryzae and Rhizoctonia solani, 
but simultaneously impedes rice growth and develop-
ment. A natural ROD1 variant, ROD1 (SNP1A) with 1 bp 
substitute at 133  bp downstream of ATG, resulting in a 
mutation from proline to threonine, shows an enhanced 
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disease resistance without affecting agronomic traits 
(Gao et al. 2021). Hence, the susceptible ROD1 variant is 
a promising candidate target for precise genome editing 
for resistance breeding. In some cases, no suitable proto-
spacer adjacent motifs (PAMs) are available for Strep-
tococcus pyogenes Cas9 (SpCas9). Therefore, a series of 
Cas9 variants with broad PAM compatibility and high 
DNA specificity, such as Cas9n-NG and SpRYCas9, have 
been engineered to generate new CBEs and ABEs (Li 
et al. 2021a). SpRYn-based ABE can efficiently induce A 
to G transition, even at non-G PAM sites. Many S genes 
in rice, including OsCPK4 and Brs-k1, have been suc-
cessfully edited by these novel editing tools, SpRY-based 
CBE and ABE (Xu et al. 2021b). Furthermore, based on 
cytidine deamination and base excision repair (BER), the 
APOBEC-Cas9 fusion-induced deletion systems (AFIDs), 
through which multiple base pairs can be precisely 
deleted, have been developed. The mutants with the 1- 
to 2-bp precision deletions in the EBEs of AvrXa7 and 
PthXo3 at the TATA box of the OsSWEET14 promoter 
were generated using AFID-3. The deletion mutants 
exhibit increased resistance to Xoo with no impact on 
plant development (Wang et  al. 2020). Recently, Prime-
Root, a genome editing system, made it possible to insert 
large DNA fragments into plant genomes. A 4.9-kb cas-
sette comprising PigmR is precisely inserted into genomic 
safe harbor in rice, which increases disease resistance of 
the mutant to fungal blast (Sun et  al. 2024). Consider-
ing that genetically modified organisms are not readily 
accepted globally, the generation of transgene-free crop 
varieties is required. Two transgene-free genome edit-
ing methods including CRISPR/Cas9 RNA (in vitro tran-
scripts of Cas9 and sgRNA) and RNP (ribonucleoprotein, 
composed of Cas9 protein and in-vitro-transcribed 
sgRNA) have been designed to create the mutants (Ran 
et  al. 2017). These newly developed technologies will 
greatly promote the application of S genes in rice disease 
resistance breeding.

Simultaneous editing of multiple susceptibility genes 
by CRISPR/Cas9-based genome editing technologies is 
another strategy to create rice germplasm with high and 
broad-spectrum disease resistance. For instance, the S 
genes Pi21 and Bsr-d1 are involved in susceptibility to 
fungal blast, while Xa5 mediates susceptibility to bacte-
rial blight. When the three S genes are knocked out, the 
mutants show enhanced resistance to rice blast and bac-
terial blight (Tao et  al. 2021). Likewise, the triple-gene 
mutants of Bsr-d1, Pi21, and ERF922 created by CRISPR/
Cas9-mediated gene editing exhibit higher blast resist-
ance than the bsr-d1 and pi21 single-gene mutants (Zhou 
et al. 2022). In addition, some S genes may play distinct, 
even opposite roles in resistance to different types of 
pathogens. For example, OsBZR1 positively regulates 

resistance to the necrotrophic pathogen R. solani nega-
tively mediates resistance to the hemibiotrophic patho-
gen Xoo (Ke et  al. 2020; Yuan et  al. 2022). Besides, the 
osmkp1 knockout mutant exhibits increased susceptibil-
ity to the vascular pathogen Xoo due to diminished lignin 
accumulation but shows enhanced resistance to the 
nonvascular pathogen Xoc, which colonizes in the inter-
cellular spaces of mesophyll cells (Lin et al. 2022). In con-
clusion, the fitness of S gene-edited crop plants should 
be investigated for tolerance to diverse biotic and abiotic 
stresses, besides pleiotropic effects on growth, yield, and 
fertility.

Conclusion and perspectives
We comprehensively summarize diverse S genes that 
facilitate pathogen infection and disease susceptibility 
in rice. These genes show promise for use in molecular 
design breeding to enhance rice resistance. Editing S 
gene might confer more durable disease resistance than 
R gene-mediated resistance. However, S genes not only 
contribute to pathogen invasion but also play a role in 
physiology, growth and development, and other types 
of resistance in plants. Therefore, it is very important to 
extensively identify and analyze the functions of S genes 
and avoid possible pleiotropic effects of S-gene editing 
on rice growth and development. The development of 
efficient and precise CRISPR/Cas9-based technologies 
in plants contributes to the application of S genes in rice 
resistance breeding. Nonetheless, there are still several 
challenges to overcome in S gene editing for rice resist-
ance breeding. The key functional sites of S genes should 
be explicit and are usually selected to target loci for pre-
cise genome editing. Achieving precision editing requires 
an understanding of the functions and molecular mecha-
nisms of S genes, as well as identifying key sites of S genes 
associated with specific target traits. Another challenge 
is to improve the efficiency and specificity of genome 
editing. Although base editors, CBE and ABE, can con-
vert C·G into T·A and A·T into G·C substitutions, other 
base editors that can create transversions, such as C·G to 
G·C, should be developed. Off-target mutations also pose 
a significant concern in genome editing. Thus, new edi-
tors with higher specificity and more effective methods 
to detect off-target mutations in genome are in urgent 
need. With the discovery of more S genes, the emergence 
of novel, precise genome editing tools, and the integra-
tion of artificial intelligence, gene editing is expected to 
greatly accelerate disease resistance breeding in rice.
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