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Abstract 

Type III secretion systems (T3SS) are syringe-like apparatuses acting as protein transport nanomachines found in most 
Gram-negative bacterial pathogens. They can inject effector proteins into the host cell cytoplasm, crossing the host 
cell membrane, and cause infection. Due to their critical role in pathogenicity, T3SS represent attractive targets 
for vaccinations and disease treatments. This review elucidates the overarching structural framework and operational 
mechanisms of T3SS apparatuses while also delineating the responsiveness of phytobacterial T3SS to host-derived 
signals and the nuanced orchestration of their activities by host and environmental stimuli. This discussion encom-
passes shared features and idiosyncratic attributes among a spectrum of pathogens, including but not limited 
to Pseudomonas syringae, Ralstonia, Xanthomonas, and Erwinia. Additionally, we scrutinize the contribution of natu-
ral products and synthetic chemicals as T3SS inhibitors, elucidating their hallmark and role in the ongoing quest 
for and design of novel drugs. An in-depth comprehension of T3SS functionality and the modes of action of diverse 
inhibitors holds promise for developing innovative drugs aimed at swiftly suppressing phyto-pathogenicity elicited 
by a spectrum of bacterial species.
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Background
Most pathogens secrete proteins that play a crucial role 
in mediating the complex interactions with other organ-
isms in their surrounding environment. These patho-
genic bacteria are equipped with specialized excretion 
systems (type I–VII) to accomplish intricate biochemical 
tasks of transporting proteins across cellular membranes. 
Among them, the type III secretion system (T3SS) has 
been extensively studied in various model organisms 
(McDermott 2011; Notti et al. 2015; Notti Ryan and Steb-
bins 2016;  Deng et  al. 2017). These pathogens are pri-
marily associated with various plant and human diseases 
(Fig. 1). Pathogenic bacterial strains can deploy T3SS to 

inject effector proteins into the host cell cytosol to mod-
ulate myriads of host cell processes and to establish an 
intracellular or extracellular niche suitable for differentia-
tion, replication, and dissemination, as illustrated (Fig. 1). 
The successful establishment of pathogens (extracellu-
lar or intracellular) depends on the efficient hijacking of 
the host immune response, functional machinery, and 
cytoskeleton. The best-known examples include Escheri-
chia coli (Entero-pathogenic and Entero-hemorrhagic; 
EPEC and EHEC), Citrobacter rodentium, Chlamydia, 
Salmonella, and Shigella strains. Because of such inva-
sions, these pathogens can easily invade hosts cells via 
T3SS. Humans and animals have suffered dysentery and 
respiratory infections, leading to epidemics of plagues. 
Similarly, plant hosts resulted in pandemics of canker, 
blights, and soft rots (Fig. 1; Abby and Rocha 2012).

A well-documented example is plant-associated Pseu-
domonas syringae and P. aeruginosa strains, which could 
show higher virulence. P. syringae have multiple hosts 
to attack and cause infection by manipulating the plant 
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defense system (immunity) with its T3SS nanomachine. 
Similarly, P. syringae, Xanthomonas, Ralstonia solan-
acearum, Rhizobium, and soft rot-causing agents Dickeya 
and Pectobacterium spp., all have diverse hosts and con-
served T3SS to suppress the immune response (Davidson 
et  al. 2013, 2017; Landry et  al. 2020;  Asif et  al. 2024b). 
T3SS relies on a conserved set of genes to function effec-
tively in these strains. Many structural protein-forming 
nanomachine apparatus are the same in most of the 
strains as HrcC forms the outer ring of the T3SS appa-
ratus, while HrcJ anchors the structure to the bacterial 
cell envelope by contributing to the basal body. HrcR and 
HrcS (HrpS) regulate the expression of T3SS components 
and the associated effector proteins. HrcU plays a pivotal 
role in protein secretion and translocation, while HrcV 
forms the translocon to ensure that effector proteins are 
delivered into the host cells. HrcN, an ATPase, provides 
the energy required for protein translocation through 
this system. Finally, the HrpB and HrpD families control 
the expression and secretion of the T3SS machinery in 
specific bacterial species. Together, this network of genes 
and proteins coordinates for assembly and regulation of 
the T3SS, allowing pathogenic bacteria such as P. syrin-
gae, R. solanacearum, Xanthomonas spp., and Erwinia 
spp. to infect their plant hosts. These pathogens inject 
their effector proteins that manipulate host cells to pro-
mote bacterial survival and colonization (Helmann et al. 
2019; Teulet et al. 2022). Despite the diversity of the host, 
there is remarkable conservation in the T3SS apparatus, 
secretion mechanisms, and their mode of action (Du 
2016; Portaliou et al. 2016; Helmann et al. 2019).

Since its discovery in 1994 (Rosqvist et  al. 1994; 
Coburn et  al. 2007), the T3SS has been systematically 
categorized into five primary components: the trans-
locon, the needle complex, the basal body, the transfer 
apparatus, and the cytoplasmatic complex (Fig. 2). The 
translocation mechanism is a critical component of the 
T3SS, facilitating the transfer of proteins from the bac-
terial cytoplasm to the host cytoplasm  (Büttner 2012, 
2016; Burkinshaw and Strynadka 2014; Burkinshaw 
2015; Sun et al. 2007), and the delivery unit is called as 
needle complex. This complex includes an ATPase and 
multiple circular structures (rings) that are intricately 
integrated into the membrane (Chang et al. 2014; Ber-
nal et  al. 2019;  Gupta et  al. 2024). Contrary to animal 
pathogens, plant pathogenic bacteria, such as patho-
vars of P. syringae and Xanthomonas spp., possess an 
elongated needle, referred to as a pilus, which enables 
penetration of the thick cell wall and contact with the 
underlying plasma membrane (Bergeron 2013, 2016). 
Likewise, EPEC, EHEC, and Citrobacter rodentium 
possess a filamentous extension (EspA) that exhibits 
structural similarities to flagellin (Lindeberg et al. 2006; 
Xin et al. 2018). Interestingly, the T3SS needles of plant 
pathogens (termed Hrp pili) have neither a tip com-
plex nor an extension, but are considerably longer than 
the needles of the T3SS of animal pathogens, probably 
so that they can penetrate the thick cellulose matrix 
of the plant cell wall. These needle modifications are 
likely to be evolutionary adaptations for infecting dif-
ferent  hosts. The needle tip protein is directly associ-
ated with the transport apparatus (Diepold and Wagner 

Fig. 1  Overview of model bacteria endowed with T3SS(s). Particular examples are the pathogenic bacteria identified in humans, mammals, animals, 
and plants, wildly known to cause epidemics in the world by causing devastating diseases. Data was compiled from Hueck (1998), Abby and Rocha 
(2012)
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2014; Diepold et al. 2015; Tang et al. 2018). The needle 
is a cylindrical structure composed of helical protein 
subunits, with its length determined by the host organ-
ism of the pathogen (Fig.  2; Lefebre and Galán 2014; 
Bergeron 2016; Murillo et al. 2016; Tang et al. 2018).

The ongoing research on specific pathogens involves 
exploring various functions, regulatory pathways, and 
inhibitors. However, a comprehensive compilation of 
comparative data to understand commonalities and 
specificities among pathogens is still lacking. Such 
data would clarify the interplay between pathogens, 
hosts, and environmental cues, particularly regard-
ing the response of phytobacterial T3SS to host signals 
and host and environmental stimuli regulation. Plant 
pathogens like Pseudomonas spp., Ralstonia spp., Xan-
thomonas spp., and Erwinia spp., are crucial subjects 
for study. In addition, dedicated efforts are required 

to identify inhibitors of the T3SS from both natural 
products and synthetic compounds. These investiga-
tions should aim for a comprehensive understanding 
of their mechanisms of action and specific molecular 
targets within the T3SS machinery of these pathogens. 
This review provides a comprehensive analysis of the 
structural framework of the T3SS apparatus, its archi-
tectural associations, co-regulatory mechanisms across 
various species, and the functional roles of its genes. 
Additionally, we have examined the functional overlap 
between distinct two-component systems in the species 
discussed, identified inhibitory compounds, and elu-
cidated the modes of action of diverse inhibitors with 
potential for novel drug development. Furthermore, we 
have conducted comparative studies on pathogen infec-
tion dynamics and explored bacterial manipulation 
strategies across different domains.

Fig. 2  The structural and functional illustrative model of T3SS nanomachine in Salmonella spp. SPI-1. In Salmonella SPI-1 T3SS, the needle complex, 
basal body, export apparatus, and sorting complex, are shown on the left side. The cross sections of the inner structure of these components are 
shown on the right side. On the right side, electron microscopy-mediated solved protein structures are compiled to display basic nanomachine 
orientations. SctC and SctD proteins transfer to the inner rod in the inner membrane and pass to the translocon or needle complex (SctF). Accession 
numbers from the Protein Data Bank (PDB) were used to search, and carton displays were created in Biorender. The proteins, accession IDs, and their 
names are listed as Needle complex. SctE (AopB-3WXX; and SipB-3TUL), SctA (SipD; PDB-3NZZ), SctF (PDB-3J0R), SctC; (PDB-5TCQ & 5TCR) (InvG); 
SctDN (PDB-3J1W) (InvG), SctDC; (PDB-5TCP), SctJ (PrgH-PrgK::PrgK; PDB-3J6D, − 5TCP; − 5TCR), SctU (SpaS; PDB-3C01, SpaSC), SctV (PDB-4A5P), SctO 
(PDB-3K29), SctN (PDB-2OBM) (Abrusci et al. 2013; Bergeron et al. 2013; 2015; Chatterjee et al. 2011; Fujii et al. 2012; Lorenzini et al. 2010; Worrall et al. 
2008, 2016; Zarivach et al. 2007, 2008; Deng et al. 2017)
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Regulation of T3SS in plant pathogenic bacteria
In Gram-negative bacteria, T3SS encoded by hrp/hrc 
(HR  and  Pathogenicity; HR  and  Conserved) clus-
ter is a prevalent feature observed in various gen-
era including Erwinia, Pseudomonas, Ralstonia, and 
others (Alfano et  al. 2000; Andrade et  al. 2014). The 
majority of hrp genes are situated within chromo-
somes, forming pathogenic islands, although a subset 
of hrp genes, such as hrpM in P. syringae, is dispersed 
throughout the chromosome. Typically, the hrp gene 
cluster size ranges from 18 to 40  kb, encompassing 
approximately 20–25 genes, among which highly con-
served genes are denoted as hrc genes. Meanwhile, 
a functional common nomenclature includes “secre-
tion and cellular translocation” (Sct) as a unified sys-
tem for conserved components of T3SS for all species 
is developed, widely adopted and recently expanded 
(Gazi et al. 2012; Peeters et al. 2013; Diepold and Wag-
ner 2014; Portaliou et al. 2016; Gaytán et al. 2016; Por-
taliou et  al. 2016). The T3SS spans the bacterial inner 
and outer membranes, and the host cell membrane, 
comprising several substructures: a cytosolic ATPase 
complex, C-ring, inner membrane export apparatus, 
basal body, needle, and translocation pore in the host 
membrane (Fig.  2). The basal body is composed of 
inner membrane rings (SctJ, SctD) and an outer mem-
brane ring (SctC), with the export apparatus formed 
by SctR, SctS, SctT, SctU, and SctV. Below this, the 
C-ring (SctQ) and ATPase complex (SctN, SctO, SctL, 
SctK) form the sorting platform for secretion (Schraidt 
et  al. 2010;  Schraidt and Marlovits 2011; Burkinshaw 
and Strynadka 2014; Hu et al. 2015; Makino et al. 2016; 
Portaliou et  al. 2016). The inner rod anchors the nee-
dle, which is capped by the SctA tip complex and con-
nects to host cells through translocators SctE and SctB. 
The length of the needle is regulated by SctP (Journet 
et al. 2003; Thomas et al. 2012; Wee and Hughes 2015), 
while SctU and SctW control the secretion hierarchy 
(Büttner 2012). A functional T3SS, containing the basal 
body and needle, is referred to as the ‘needle complex’, 
analogous to the flagellar hook-basal body structure 
(Fig.  2; Macnab 2003;  Schraidt and Marlovits 2011). 
Sct hereafter is referred to as conserved hrp/hrc locus 
for P. syringae nomenclature. HrcV exhibits significant 
homology with their counterparts in Yersinia (Xin et al. 
2018). The T3SS is the main virulence determinant in 
most pathogenic Xanthomonas species, encoded by the 
conserved hrp/hrc locus similar to Pseudomonas T3SS, 
having 20 proteins with multiple copies to develop the 
major T3SS subassemblies: the sorting platform (HrcQ, 
HrcL, HrcN, and HrpB7), the export apparatus (HrcR, 
HrcS, HrcT, HrcV, and HrcU), the needle complex 

(HrcD, HrcJ, HrcC, and HrpE), and the translocon 
(HrpF) (Alvarez-Martinez et al. 2020).

Based on the genetic similarity within the hrp cluster, 
it consists of two distinct groups (Baltrus et  al. 2017; 
Wang et  al. 2018). The first group, “Hrp1”, includes E. 
amylovora, P. syringae, and Pantoea spp. (Baltrus et  al. 
2017), and the second group, “Hrp2”, comprises R. sola-
nacearum, Xanthomonas spp., and Acidovorax citrulli 
(Clarke et al. 2010; Abby and Rocha 2012). The primary 
disparity between these two groups lies in their tran-
scriptional regulation systems. The first group, including 
P. syringae, regulates the T3SS expression using extra-
cytoplasmic function sigma (σ) factor rpoN and alterna-
tive sigma factor hrpL transcriptionally (Fig.  3a), while 
both Erwinia spp., and Pseudomonas spp., also utilize 
the upstream transcriptional regulator HrpS alone or 
together with HrpR to control the Hrp genes expression. 
In addition, Hrp2 species use the transcriptional regula-
tor HrpR to modulate the HrpS expression, subsequently 
activating the functional action of hrpL to control T3SS 
activity (Hutcheson et  al. 2001; Jovanovic et  al. 2014; 
Wang et al. 2018). In the second group, members of the 
AraC family of proteins regulate transcriptional activ-
ity associated with T3SS (Chang et al. 2014; Costa et al. 
2015; Waite et al. 2017).

R. solanacearum and Xanthomonas spp. synthesize 
their T3SS using about 20–22 hrp/hrc genes, which con-
tain tight regulatory control. It is unique in linking T3SS 
gene expression directly to plant host contact, using 
effectors to alter host defense and metabolic pathways 
(Rico and Preston 2008; Xian et  al. 2020). Expression 
of hrp/hrc genes is triggered when the outer membrane 
receptor PrhA detects an unidentified cell wall compo-
nent, initiating a signaling cascade. HrpG, an OmpR-type 
regulator, activates HrpB, which directly regulates T3SS 
genes and effectors, likely by binding to the hrp box motif 
(Occhialini et  al. 2005;  Coll and Valls 2013). HrpG and 
HrpB have homologs in Xanthomonas and Burkholderia 
species (Li et  al. 2011; Lipscomb and Schell 2011), but 
PrhA and its upstream regulators are not conserved in 
other species. Moreover, the Xanthomonas T3SS cluster 
facilitates the translocation of type III secreted effectors 
into plant host cells (White et  al. 2009). These effec-
tors, known as Xops (Xanthomonas outer proteins), are 
crucial for Xanthomonas pathogenicity. The T3SS clus-
ter is uniquely positioned in X. campestris pv. campes-
tris, suggesting independent acquisition as indicated by 
its chromosomal location, distinct from other group 2 
species (Jacob et  al. 2015; Merda et  al. 2017). However, 
further studies related to pathogenicity-related genes 
in  R. solanacearum and their mechanisms of regulation 
are extensively reviewed elsewhere (Peeters et  al. 2013; 
Lowe-Power et al. 2018; Vailleau and Genin 2023).
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Transcriptional and post‑transcriptional regulation of T3SS 
genes
The major transcriptional regulatory control of the T3SS 
cascade is under the HrpL protein belonging to the ECF 
family. This protein, along with its alternate sigma fac-
tor (σ54), interacts with a conserved “hrp-box; GGA​ACC​
-N15-16-CCACNNA” located in the promoters of certain 
genes involved in the T3SS regulation (Fig.  3b; Fouts 
et  al. 2002;  Xiao et  al. 2004; Chang et  al. 2014). HrpL 
facilitates the transcription of the hrp/hrc and other 
T3SS effector genes with the assistance of RNA poly-
merase, resulting in improved pathogenicity (Hutcheson 
et  al. 2001; Zwiesler-Vollick et  al. 2002;  Schechter et  al. 
2006; Ferreira et al. 2006; Huang et al. 2022; Zhao et al. 
2022). Many studies are inclined to propose that HrpL-
mediated regulation and coordination with other T3SS-
encoding genes are achieved in a well-organized pattern. 
It precisely controls the expression and timely induction 
of associated genes in the pathway (Ferreira et  al. 2006; 
Thwaites et al. 2004; Waite et al. 2017). The interruption 
of the hrpL gene during the natural or synthetic process 
of evolution results in impaired hrpL promoter activity, 

transcriptional activity, and subsequent base mutation in 
the promoter region, resulting in the loss of pathogenic-
ity in P. syringae pv. actinidae (Xie et al. 2023).

In addition to the σ54 sigma factor (RpoN), two other 
proteins HrpR and HrpS, also play a crucial role in the 
transcription of hrpL regulation and start the T3SS gene 
expression (Ortiz-Martín et al. 2010a; Wang et al. 2018). 
These two proteins are found in a HrpRS locus present 
inside the hrp/hrc cluster (Hendrickson et al. 2000; Wang 
et  al. 2018). Moreover, the HrpR is required for hrpS 
transcription, and this interaction with an upstream reg-
ulatory sequence known as the Hrp-box was described 
in halo-blight bacterium NPS3121 (Ortiz-Martín et  al. 
2010a; Jovanovic et  al. 2011). The oligomerization of 
HrpR and HrpS results in the formation of a heterohexa-
meric complex, essential for the complete activation of 
the hrpL gene. However, it should be noted that HrpS 
(Hutcheson et al. 2001), alone can interact with hrpL pro-
moter to activate it. Still, the potential expression would 
be weak when the other partner, hrpR, is not present 
(Jovanovic et  al. 2011). In addition to the activation of 
hrpL, hrpS is responsible for regulating the activation of 

Fig. 3  The pathogenicity island and basic master regulators of T3SS genes. a The pathogenicity islands present in the Pseudomonas syringae pv. 
actinidae M228, compared to gene orientation in P. syringae pv. tomato DC3000 and P. savastanoi pv. phaseolicola 1448a. This orientation shows 
the similarity and uniqueness of the three strains and their evolutionary aspects. For the orientation of the T3SS cluster of P. syringae pv. tomato 
DC3000 and P. savastanoi pv. phaseolicola 1448a was adapted from Xie et al. (2019). b HrpL master regulator influenced by different factors, 
especially HrpX (HrpG, V, U), TCS, and RSM system, and ultimately infects the host plant. c the master regulator hrpG regulated by different sigma 
factors (PhoPQ) and other factors in P. aeruginosa. The display data was compiled from Anantharajah et al. (2016), Xie et al. (2019)
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several genes that are not dependent on T3SS through-
out the entire genome (Lan et al. 2006, 2007; Wang et al. 
2018). A study on three deficient mutants of hrpL, along 
with hrpRS genes in P. syringae DC3000, revealed rapidly 
accumulated gene expression of different housekeeping 
genes other than T3SS. This transitional switching off 
of T3SS activity to a widespread increase of the normal 
metabolic processes indicated a tradeoff function in P. 
syringae (Lan et al. 2006).

Moreover, HrpA (or HrpA1) is known to form pilus 
protein and exert its transcriptional regulatory effect 
on the T3SS pathway (Wei et  al. 2000). The hrpA gene 
is located on the upstream region of hrpRS and hrpL in 
the P. syringae DC3000 and is necessary for the release 
of different substrates primarily as harpins (Abrusci et al. 
2013; Waite et  al. 2017). HrpA is a gene regulated by 
HrpL and can be activated by soluble signals from plant 
cells (Wei et  al. 2005; Waite et  al. 2017). HrpA1 is nec-
essary for the induction of hrpL and hrpS transcription 
in P. syringae pv. phaseolicola 1448a in the leaves of host 
bean plants (Ortiz-Martín et  al. 2010b). To activate the 
HrpZ operon expression, P. syringae pv. phaseolicola and 
syringae DC3000 show the same upregulated expression 
of hrpL, hrpRS, and hrcC mRNA transcripts upon hrpA 
mutation compared to wild-type control, upon contact 
with the plant, suggesting the presence of an important 
feedback mechanism to control T3SS by hrpA (Wei et al. 
2000; Ortiz-Martín et  al. 2010b). Although HrpA can 
autoactivate the T3SS pathway, negative self-regulation 

prevents excessive production of T3SS-related proteins. 
An additional promoter region containing hrp-box is 
also situated in the hrpJ gene, and the promoter activ-
ity of hrpL is downregulated by HrpL itself through 
its binding to that box. This HrpL-T3SS signaling cas-
cade exhibits robust signal amplification, while negative 
autogenous regulation prevents excessive accumulation 
of T3SS substrates (Waite et  al. 2017). Similarly, higher 
expression of hrpL transcripts increased the extracel-
lular accumulation of HrpA1, but the increased level of 
T3SS harpin and effector proteins were not secreted out 
of the cell. The intracellular accumulation of these com-
pounds in P. syringae modulated the T3SS in two distinct 
phases: First, HrpL-dependent expression of T3SS genes 
and secretion of HrpA1, and second, secretion of down-
stream T3SS substrates, which appears to be regulated 
post-translationally. The exact mechanism triggering the 
secretion of these substrates remains unknown, but it is 
likely linked to the maturation of the HrpA1 and its con-
tact with the host plasma membrane (Waite et al. 2017).

The HrpRS heterodimer, which plays a role in the tran-
scriptional activation of hrpL, undergoes translational 
control by two other small proteins HrpV and HrpG 
(Fig. 4a). Accordingly, HrpV has a direct interaction with 
HrpS, resulting in a constraint on the binding capac-
ity of HrpS to HrpR (Jovanovic et al. 2011, 2014). HrpV 
can interact with HrpG (a chaperone protein) linked to 
the T3SS basal body located at the plasma membrane 
(Jovanovic et  al. 2011). It is postulated that HrpV binds 

Fig. 4  The identified factors influencing the de-repression and suppression of T3SS regulation in terms of HrpRS-HrpL pathway in P. syringae. a 
HrpL transcription is regulated by different proteins that include AefR, PsrA (indirect positive activators), and CorR upstream binding agent (binds 
directly to HrpL and activates early transcription). HrpJ established a binding complex with hrpL promoter to prevent the formation of HrpRS 
complex, which creates a negative feedback loop to negatively regulate hrpL activity. Then, HrpS protein itself can stimulate the T3SS effector 
proteins. AlgU and HrpA induce the overexpression of the hrpRS locus in a direct manner. In GacSA TCS, phosphorylated-gacA binds indirectly 
to the IR (inverted repeats) region of hrpR and hrpL to induce their expression. CvsR has a direct regulatory effect on the activation of hrpRS, which 
is expressed in the presence of calcium ion Ca2+ as an external environmental stimulus and ultimately sustains the T3SS-dependent virulence 
in P. syringae. In a higher level of c-di-GMP, HrpR/HrpL expression is repressed. In addition, HrpV blockage is removed by HrpG activity and it frees 
the HrpS as well as HrpJ makes a complex with both (HrpJG/V) to allow the induction of the expression of T3SS. Thus, HrpG is the anti-repressor 
of an anti-activator HrpV. The bonding of HrpG with HrpF exerts a negative regulatory effect on T3SS by allowing the formation of the HrpRSVG 
circuit. P-RhpR independently activates T3SS effector genes like hopR1. The chaperone protein RhpC directs metalloprotease RhpP to the periplasm. 
In the absence of RhpC, RhpP decreases the expression of HrpL. Induction of hrpRS and hrpL transcription requires (p)ppGpp. b P. syringae cultured 
in Kings B (nutrient-rich condition, KB) resulting in suppression of its T3SS; hrpL gene allows HrpT to bind its promoter and motif which indicates 
an indirect regulation by HrpT as shown by dotted lines, The PRhpR starts to pile-up and its abundance leads to the suppression of hrpRS to check 
its low expression. HrpV influences the binding affinity of HrpS protein to prevent the oligomerization of HrpRS; HrpRS heterodimer destruction 
and negative regulation is described with red dotted arrow. Phosphorylation of RhpR is mediated by another TCS unit kinase RhpS, and helps 
in a sustained phosphorylated state. To achieve the phosphorylated RhpR abundance, another pathway is activated using its own promoter 
with an inverted repeat (IR) element, and their covalent bonding leads to producing more PRhpR. Unphosphorylated-RhpR has a positive 
regulatory effect on three genes a) functional accumulation of c-type cytochrome, b) regulate alcohol dehydrogenase synthesis, and c) positive 
modulation of hemB and negative effect on protease production in KB medium. RhpR also functions as a negative regulator of anthranilate 
synthase activity. On the other hand, phosphorylated RhpR inhibits swimming motility but shows a positive effect on the induction of twitching 
motility. Additionally, in vivo, P-RhpR functions as a negative regulator of the biofilm (algD) and c-di-GMP levels while improving lipopolysaccharide 
production in a positive manner. P-RhpR has a positive effect on LonB protein, which results in the breakdown of HrpR protein and prevention 
of HrpRS oligomerization. Gene orientations and scheme of events adapted with permission from Xie et al. (2019)

(See figure on next page.)
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to the cellular membrane by interacting with HrpG dur-
ing stimulated T3SS expression. This spatial contact hin-
ders the connection of HrpV with bacterial DNA and, 
therefore, inhibits the blockage effect of HrpS (Charova 
et  al. 2018). The HrpVG complex still can interact with 
HrpJ in the inner membrane, but the HrpJ role within 
the cellular environment of plants is unidentified other 
than inhibiting the immune response of the host (Cra-
bill et al. 2012). Before its translocation, HrpJ blocks the 

inner channel of the T3SS by creating a ternary complex 
resembling a gatekeeper, together with HrpVG (Cherradi 
2013; Charova et al. 2018). In the inner core membrane 
of T3SS, another binding complex is formed by the inter-
action between HrpG and HrcU (Charova et  al. 2018). 
During the infection of P. syringae inside the host plant, 
HrpJ acts as a facilitator for the complete functionality of 
the T3SS to secrete translocator proteins and harpins (Fu 
et al. 2006; Ramos et al. 2007; Crabill et al. 2012), depend-
ing on signals that induce secretion (Crabill et al. 2012).

Fig. 4  (See legend on previous page.)
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Although the HrpA1 protein undergoes rapid deg-
radation inside the bacterial cell, it can remain intact 
by forming a complex with the T3SS regulatory protein 
HrpF (Haapalainen et  al. 2009; Huang et  al. 2022). The 
importance of HrpF is well-established in disease patho-
genesis and for the functional T3SS development in dif-
ferent P. syringae strains (Huang et  al. 2016; Deng et  al. 
2017). This hrpF interaction may result in the de-repres-
sion of HrpS and the enhancement of the expression of 
the T3SS signaling cascade (Huang et al. 2016, 2022). In 
addition, elucidating the possible interactions of HrpF, 
HrpA1, and HrpJ-VG circuits could reveal their crucial 
role in intracellular dynamics and establish the regulatory 
link between the expression and secretion of the T3SS 
(Fig. 4). The HrpA1 protein is accumulated in the extra-
cellular space before the secretion of other substrates of 
T3SS (Haapalainen et al. 2009; Waite et al. 2017). Overall, 
the pilus synthesis mediated by the hrpA1 gene and sub-
sequent interaction with host cells might potentially ini-
tiate the secretion process (Waite et al. 2017). However, 
the exact mechanisms behind the activation of down-
stream T3SS substrate secretion remain unknown.

The  hrp  genes in  Xanthomonas  spp. and  R. solan-
acearum  were classified with  hrp  group 2; they are 
different from  E. amylovora  and  P. syringae in some 
aspects.  Xanthomonas  spp. and  R. solanacearum use 
HrpG regulon to regulate it by HrpX, which interacts with 
a cis‐element within the promoter region of  hrp  genes, 
referred to as plant‐inducible promoter (PIP)‐box, which 
is also present in the promoter of many T3 effectors ( Fan 
et al. 2017). In addition to HrpG and HrpX, HrpD6 was 
reported as a hrp regulator in Xanthomonas spp, respon-
sible for regulating multiple hrp genes (Li et al. 2011; Fan 
et  al. 2017). In addition to conserved genes, some extra 
regulatory and control genes, sigma factors are underway 
to discover.

Activity of T3SS in artificial medium in relation 
to environmental cues
The T3SS-mediated virulence of Hrp1 species plays a 
crucial role, with strains investing substantial cellular 
resources in synthesizing the T3SS apparatus (Sturm 
et  al. 2011). This allocation aims to quickly initiate the 
mechanism to counteract the host’s immune system. 
Thus, the interaction between bacterial T3SS and the 
host’s immunity is crucial in the initial stages of plant 
infection (Xin et  al. 2018). Thus, the initial period dur-
ing infection is critical in determining disease outcome 
and severity. To comprehend this critical phase of infec-
tion, especially in P. syringae, it is necessary to identify 
the specific signal from the pathogen that initiates T3SS 
activity. The hrp/hrc genes are generally repressed when 
the pathogen is grown in nutrient-rich environments. 

Nevertheless, a low level of expression may persist in 
these conditions due to the presence of genes such as 
hrpV and hrpT in T3SS cluster (O’Malley and Anderson 
2021). The dissociation of the anti-repressor and anti-ter-
minator complexes may occur under nutrient-deprived 
conditions at the hrp/hrc genes, facilitating a rapid 
increase in T3SS activity. However, additional evidence is 
required to support this hypothesis, providing opportu-
nities for further investigation.

The expression of the T3SS-oriented hrp/hrc genes in 
P. syringae can be evaluated during growth in nutrient-
deprived media (O’Malley and Anderson 2021). These 
nutrient-poor formulations, known as HIM (hrp-induc-
ing minimal medium) and HDM (hrp-de-repressor 
medium), are designed to promote higher expression lev-
els. The main difference lies in the carbon, nitrogen, and 
sugar sources (fructose or mannitol) and their slightly 
acidic pH. In addition, for Xanthomonas spp., hrp-induc-
ing medium XOM2 is used to trigger T3SS activity. This 
environmental condition primes P. syringae for T3SS 
activation, highlighting the importance of understand-
ing the nutritional cues that modulate T3SS expression 
in bacterial pathogenesis. It can be said that the expres-
sion of T3SS-associated genes in P. syringae and Xan-
thomonas may be influenced by broader environmental 
variables during infection, independent of specific plant 
metabolites acting as signals.

Positive and negative regulation of T3SS levels 
by plant‑derived signals
Similar to synthetic media conditions, studies have shown 
elevated expression levels of T3SS during infection in 
planta (Haapalainen et al. 2009), suggesting the existence 
of distinct signals in the rhizosphere microenvironment 
that trigger the production of the T3SS in bacteria. Dur-
ing initial investigations, it was observed that the series 
of T3SS genes in a cluster, especially hrpL expression was 
increased when two different host plants (susceptible 
and resistant) were infiltrated with P. syringae (Xiao et al. 
2007). In addition to susceptible and resistant varieties, 
non-host species exposed to similar treatment revealed 
improved T3SS expression, suggesting metabolite-based 
signals are standard in different plants instead of being 
specific to the host plant. Previously, a study stated a 
significant ten-times rise in mRNA levels of hrpA1 in a 
minimum medium supplemented with tomato exudates 
(soluble signals) (Haapalainen et al. 2009). Subsequently, 
the exudates obtained from Arabidopsis-based extracted 
suspension cultures without cells also induced the RNA 
levels of hrpL and levels of avrPto effector protein (Yan 
et  al. 2019). In addition, the presence of plant cells in 
the suspension increased the proliferation of P. syrin-
gae DC3000 using the “infection-in-a-flask” approach. It 
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indicates that the signals originating from plants boosted 
bacterial proliferation by augmenting the deployment of 
the T3SS (Yan et al. 2019).

In another study, Arabidopsis seedlings immersed in 
water (exudates) resulted in significant AvrPto accu-
mulation and enhanced hrpL gene expression level in P. 
syringae pv. tomato DC3000 (Anderson et al. 2014). Most 
importantly, citric acid and aspartic acid were identified 
as the bioactive molecules responsible for triggering the 
T3SS, as they are present in significant quantities in the 
tissues of plants. This finding further reinforces prior 
discoveries that T3SS is activated by common charac-
teristics of the host signals instead of signals unique to 
a particular host (Rico and Preston 2008; Kumar et  al. 
2017; Yan et al. 2019). Although all bioactive substances 
retain a carboxyl group to exhibit acidity, not all can 
induce T3SS. For instance, amino acids such as leucine 
and valine may trigger T3SS, suggesting a certain degree 
of selectivity to detect these compounds. It also indicates 
that optimal biological activity mediated by acidic metab-
olites in triggering T3SS is dependent on the existence of 
an essential sugar like fructose. The generation of phyto-
toxins, such as syringomycin, in P. syringae pv. syringae 
is modulated by specific plant-derived signals, with the 
syrB gene playing a pivotal role in both syringomycin 
production and full virulence during plant pathogenesis. 
Research has demonstrated that phenolic glucosides, 
such as arbutin, phenyl-β-D-glucopyranoside, and salicin, 
act as strong inducers of syrB transcription, while sugars 
like D-fructose and sucrose enhance the pathogen’s sensi-
tivity to these phenolic signals, thereby amplifying toxin 
biosynthesis. These findings suggest that the synthesis 
of phytotoxins like syringomycin is closely linked to the 
pathogen’s ability to detect and respond to plant metabo-
lites, which may complement T3SS-mediated infection 
strategies during pathogenesis (Mo and Gross 1991).

In a quest to find a specific signal exuded from plants 
in regulating the effects of P. syringae infection, model 
organism Arabidopsis was mutated to impair the pro-
duction of immunological regulator mitogen-activated 
protein kinases MAPK phosphatase 1 (MKP1) (Andrade 
et  al. 2014). The mkp1 mutant exhibited improved 
immune responses to pathogenic elicitors and increased 
resistance against P. syringae DC3000 infection. Moreo-
ver, in the context of mkp1 infection, DC3000 exhibited a 
diminished capacity to stimulate T3SS-associated genes 
and transport effectors molecules (Anderson et al. 2011; 
2014). Analysis of mkp1 mutant exudates via GC–MS 
revealed decreased concentrations of several metabo-
lites that induce T3SS, such as citric acid and aspartic 
acid. The complemented MKP1 plant with these metab-
olites fully reestablished DC3000’s capacity to transfer 
effectors, thereby regenerating susceptibility to DC3000 

infection (Anderson et al. 2011; 2014). Overall, it can be 
inferred that the virulence-inducing signals depend on 
the plant host’s genetic makeup during infection.

Auxin, also known as indole-3-acetic acid (IAA), is a 
plant-derived chemical capable of suppressing the pro-
duction of P. syringae’s T3SS (Anderson et  al. 2011; 
McClerklin et  al. 2018;  Djami-Tchatchou et  al. 2020). 
As the infection progresses, P. syringae reallocates cel-
lular resources from T3SS development to the other 
secretion system due to higher bacterial density in the 
apoplast, favoring microbial competition (McAtee et  al. 
2018; Djami-Tchatchou et al. 2020). Sulforaphane, a glu-
cosinolate synthesized in Arabidopsis and other Bras-
sicaceae family members, also suppresses T3SS gene 
expression by modifying the T3SS master regulator 
HrpS through covalent interactions, thereby enhancing 
plant defense (Wang et al. 2020). Meanwhile, the Arabi-
dopsis plant lines unable to synthesize glucosinolate 
showed more susceptible action towards the infection of 
P. syringae, indicating that sulforaphane-mediated T3SS 
suppression contributes significantly to host defense 
mechanisms (Wang et  al. 2020). Additional substances 
originating from plants, such as plant flavonoids and 
other phenolics (Vargas et al. 2013; Lee et al. 2015; Kang 
et  al. 2020; Zhi et  al. 2022), together with several syn-
thetic chemicals, have shown inhibitory effects on the P. 
syringae T3SS (Ma et al. 2019; Puigvert et al. 2021). Con-
sidering the fact that the energy expenditure associated 
with the production and upkeep of the T3SS is substan-
tial (Sturm et  al. 2011), it is plausible that cells exhibit-
ing low levels of T3SS expression, commonly referred 
to as “cheater” cells, can allocate their energy resources 
towards proliferation or other cellular activities. This 
mechanism may improve the pathogen population’s 
adaptability and overall fitness (Xie et al. 2023). To fully 
grasp the impact of tactics on P. syringae’s virulence, it is 
crucial to comprehensively characterize the precise pat-
terns responsible for initiating and sustaining T3SS bista-
bility in the host environment.

Phenolic caffeic acid, secreted in increased amounts 
by tobacco roots following R. solanacearum inoculation, 
reduces disease symptoms when applied exogenously in 
pot and field experiments (Li et  al. 2021). Other plant-
derived natural products, such as coumarins, also exhibit 
antibacterial activity. For instance, 7-methoxycoumarin 
mitigated tobacco bacterial wilt in pot experiments (Han 
et al. 2021). Additionally, salicylic acid inhibits R. solan-
acearum growth and suppresses several bacterial wilt 
virulence factors (Lowe-Power et al. 2016). Plant signals 
as essential oils from aromatic plants contain various 
volatile molecules with protective effects against many 
phytopathogens, including R. solanacearum (Pradhanang 
et  al. 2003; Deberdt et  al. 2018). These oils have been 
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studied for over 20  years for their efficacy against this 
bacterium (Raveau et al. 2020).

In Ralstonia and Xanthomonas, the enzymatic func-
tions of some type III effectors (T3Es) include acetyl-
transferases, proteases, and ubiquitin ligases, with 
established repertoires of plant proteome interactors 
(González-Fuente et  al. 2020). T3Es can have multiple 
functions depending on the host; for example, RipAB 
downregulates calcium signaling in potatoes (Zheng et al. 
2019) and inhibits TGA transcription factors in Arabi-
dopsis (Qi et al. 2022). Furthermore, screening of various 
plant-based chemicals against these strains resulted in 
the identification of salicylidene acylhydrazides as T3SS 
inhibitors, which limits bacterial growth in plants (Puig-
vert et al. 2021).

Host-derived amino acids and sugars, especially in the 
apoplast which serves as a battleground where patho-
gens attempt to breach the plant’s defenses and establish 
infection in leaves (Rico and Preston 2008;  Anderson 
et  al. 2014), are the first compounds encountered by 
P. syringae throughout the process of infection. These 
plant exudates contain organic acids and amino acids 
that optimally trigger T3SS genes after their inclusion 
in the induction medium (minimal medium). In order 
to understand the regulatory T3SS pathway in response 
to these organic acids and amino acids, a notable gene 
was identified by the genetic mutations known as SetA 
that induce the T3SS genes in response to sugars, and is 
a putative transcription factor of the DeoR-type (Turner 
et al. 2020). The gene SetA alone has been implicated in 
partially increasing the expression levels of the effector 
genes avrRpm1 and hrpL in DC3000 upon exposure to 
sucrose, fructose, and mannitol. In Arabidopsis leaves, 
it was identified as an essential factor for achieving the 
highest hrpL expression (Turner et  al. 2020). A mutant 
strain of DC3000 lacking the setA gene exhibited reduced 
growth capability, accompanied by impaired expression 
of hrpL. Furthermore, the observed activity of hrpRS and 
rpoN was quite like the wild type, suggesting a role for 
SetA in directly regulating hrpL induction or post-trans-
lational feedback modulation of unaffected genes (Turner 
et al. 2020).

T3SS regulatory pathway in response to environmental 
stimuli
The regulation of T3SS by host signals is intricate, 
involving multiple sensory and signaling pathways in 
combination that detect the signals from the host and 
respond to environmental stimuli, ultimately impacting 
T3SS deployment (Ma et  al. 2019). According to recent 
advances, HrpL and its associated co-regulating compo-
nents, HrpRS, are used to sense the environmental cues 
in P. syringae, resulting in a canonical cascade (Khokhani 

et  al. 2013). Its network tightly regulates the T3SS due 
to its shared nature among Gram-negative pathogens. 
However, different pathogens of various types use unique 
master regulators of T3SS. For example, comparatively, 
Hrp1-type pathogens initiate the T3SS pathway from 
HrpS, while in Hrp2-type, T3SS is initiated by HrpG 
(Fig. 4b). Further research has expanded our knowledge 
of the Hrp1 and Hrp2 regulatory networks, revealing 
their modulation by key regulatory pathways such as 
the Gac-Rsm pathway, the C-di-GMP second messenger 
pathway, and quorum sensing (Fig. 4b). For instance, the 
global regulatory factor ExsA is influenced by factors like 
cAMP, Gac-Rsm, and RpoS (sigma factor), independent 
of T3SS, exerting direct or indirect regulatory effects on 
T3SS transcription and function (Fig.  4; Anantharajah 
et al. 2016). However, our understanding of the sensory 
domains and the environmental stimulus inducing T3SS 
in P. syringae is limited.

The involvement of the two-component systems 
(TCSs) in regulating bacterial virulence in the environ-
ment is a regular occurrence (Beier and Gross 2006; Tang 
et al. 2006). Bacteria predominantly use TCSs for signal-
ing and communication, which consist of a membrane-
integrated histidine kinase that perceives a stimulus and 
a cytoplasmic response regulator. The exchange of infor-
mation by histidine kinase (sensory unit) and a response 
regulator through conserved phosphorylation and 
dephosphorylation reactions (Jung et  al. 2012; Sankhe 
et al. 2023). After the perception of stimulus by the sen-
sory first component, it is transferred to the cognate 
transcriptional factor and response regulator to regulate 
gene expression (West and Stock 2001). A couple of years 
ago, the two-component system AauSR was discovered 
by the Tn5-mediated genetic screening of DC3000. This 
research further revealed that the identified TCS could 
utilize amino acids, thus designating it as an Amino-Acid 
Utilization Sensor and Response Regulator (AauSR). This 
nutrient-sensing system also comprises a histidine kinase 
(AauS) and response regulator AauR and TCS was pri-
marily responsive to aspartic acid and fructose, resulting 
in augmented expression of T3SS genes (Yan et al. 2020). 
These two genes were located inside the aat/aau locus, 
widely conserved in Pseudomonas strains. This locus is 
also comprised of genes encoding the ABC transporter 
complex AatQMP linked to another protein, AatJ, pre-
sent in the periplasm. Previously, this locus’s roots were 
identified and described in nonpathogenic P. putida 
(Sonawane et al. 2006; Singh and Röhm 2008). Aspartic 
acid and glutamic acid consumption in P. putida is facili-
tated by the proteins AatQMP and AatJ. Additionally, the 
protein AauS is responsible for sensing and transport-
ing the substrates that have accumulated in cells. The 
aatJ gene was supposed to have a binding site regarded 
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as AauR binding motif (Rbm). Upon exposure to aspartic 
acid or glutamic acid, a series of events used to happen 
in a sequence that includes AauR finds its binding site 
in the aatJ gene followed by activation of ABC co-trans-
porter locus aatJQMP, which leads to improvement and 
enhanced hrpRS and hrpL gene expression (Deng et  al. 
2014; Yan et al. 2020). The genome mining of DC3000 for 
Rbm sequences revealed an extra Rbm sequence located 
upstream of hrpRS, suggesting a potential direct influ-
ence of AauR on the production of hrpRS (Fig. 4).

Deletion of the Rbm upstream of hrpRS exhibited 
reduced T3SS gene activity levels in response to aspartic 
acid and glutamic acid, suppressing virulence of DC3000 
in Arabidopsis plants (Deng et al. 2014; Yan et al. 2019). 
The presence of Rbm in the hrpRS promoter is conserved 
among 38 P. syringae isolates with the canonical tripartite 
pathogenicity island, suggesting a common regulatory 
function of AauSR towards HrpRS (Fig. 4). A similar uni-
versal nature of the motif of each locus was observed in 
P. syringae B728a, where aauR essentially increased T3SS 
gene activity, resulting in heightened strain virulence in 
bean plants (Vinatzer et al. 2006; Kumar et al. 2017; Yang 
et al. 2017). All these events proved that the Rbm incor-
poration happened earlier than hrpRS motif in P. syrin-
gae during evolution, likely playing a key role in the initial 
development of P. syringae virulence (Kumar et al. 2017).

Redundancy in different global regulatory pathways 
on T3SS regulation
Three different TCS localized in the periplasmic space to 
the inner membrane are identified and widely described 
in P. syringae strains. One of the two-component systems, 
GacSA, is responsible for responding to an unidentified 
stimulus and subsequently activating the cytoplasmic 
response regulator GacA through a process known as 
phosphorelay (Latour 2020). Earlier studies on TCS in 
P. syringae initially designated the  gacS gene as lemA 
(lesion manifestation). However, It was a difficult task 
for authors to pinpoint the  associated response regula-
tor gacA essentially present in the vicinity of the response 
regulator, despite the common occurrence of two units 
being co-located in the genome (Koretke et al. 2000). This 
system bears a resemblance to the BarA/UvrY TCS found 
in E. coli (Pernestig et al. 2001). In the γ-proteobacteria, 
the gacA is located distant from gacS and co-located with 
uvrC in an operon. The uvrC gene encodes a component 
of the nucleotide excision repair complex (Heeb and 
Haas 2001; Heeb et al. 2002).

Certain studies described a positive effect of GacSA 
on T3SS expression (Chatterjee et  al. 2003, 2007; Var-
gas et  al. 2013;  Ferreiro et  al. 2018), while others have 
documented a negative regulation by GacSA and sug-
gested that it is not essential to initiate T3SS expression 

in planta conditions (Marutani et al. 2007). For instance, 
GacSA suppresses the T3SS in P. aeruginosa (Brencic 
et al. 2009; Valentini et al. 2018). In another study focused 
on investigating the molecular mechanisms behind the 
regulation of virulence by GacSA in P. syringae (O’Malley 
et  al. 2019), an AC811 mutant strain exhibited reduced 
virulence and a decreased T3SS activity in the plant 
microenvironment. This model has been represented in 
several contemporary publications (Brencic and Winans 
2005; Tang et al. 2006; Moll et al. 2010), as well as in dif-
ferent predictive biological models of virulence regula-
tion in P. syringae (MacLean and Studholme 2010).

In addition, the deactivation of gacA revealed increased 
expression in an AC811 strain rather than a reduction 
of T3SS activity (O’Malley et  al. 2019). The diminished 
virulence of an AC811 mutant strain was ascribed to 
a secondary alteration in anmK, encoding an enzyme 
implicated in the reprocessing of the bacterial cell wall. It 
showed adverse effects on uvrC`s transcriptional levels, 
contributing to the observed attenuation. However, the 
association of P. syringae virulence with anmK and uvrC 
has not been previously established. Thus, a gacA muta-
tion can polarize the downstream expression of uvrC, 
suggesting a similar adverse impact on the virulence of P. 
aeruginosa infections in mammals (Ferreiro et  al. 2018; 
Qin et al. 2022).

Moreover, in contrast to the deployment of T3SS, the 
presence of GacA was necessary for the cell motility of 
DC3000, suggesting an inverse regulatory relationship 
between the T3SS and motility (O’Malley et  al. 2019). 
Frequent cell movement (motility) is essential for P. 
syringae attachment with the host to enter the intercel-
lular space via stomatal openings in the surface of leaves 
(Chieda et  al. 2005). Consequently, this process may 
enhance the ability of P. syringae to survive on the sur-
face of plants until enter the internal tissues of leaves. 
The GacSA system is subsequently inactivated, leading to 
the de-repression of T3SS at the apoplast (Fig.  4a). The 
precise mechanism(s) underlying the impact of GacSA 
on the deployment of T3SS remains uncertain, but it is 
established that GacSA exerts regulatory control over the 
RsmA proteins.

Another TCS, RhpSR, is responsible for regulating the 
expression of T3SS in P. syringae pv. phaseolicola 1448a. 
The response regulator RhpR undergoes phosphoryla-
tion to exert repression on T3SS through its interaction 
with an IR element located in the promoters of hrpR 
and/or hopR1 (Xiao et  al. 2007;  Deng et  al. 2010). Fur-
thermore, the phosphorylated form of RhpR can activate 
the promoter activity of the Lon protease gene, lead-
ing to the degradation of HrpR (Xiao et  al. 2007;  Deng 
et al. 2010; Xie et al. 2019). The sensor histidine kinase, 
RhpS, can show autokinase activity, including kinase and 
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phosphatase activity towards RhpR (Deng et  al. 2010; 
2014). During the abundance of nutrients in a medium, 
the protein RhpS acts as a kinase to facilitate the sup-
pression of T3SS. In contrast, RhpS exhibits phosphatase 
activity towards RhpR for the induction of T3SS in mini-
mal nutrition. This activity leads to a decrease in the 
activity of RhpR at specific target promoters (Xiao et al. 
2007; Xin et  al. 2016, 2018; Xie et  al. 2019). RhpR can 
undergo phosphorylation in addition to RhpS, perhaps by 
the action of physiological phosphor-donors like acetyl 
phosphate, and/or by sensor kinases from other TCSs 
(Deng et  al. 2017). This regulatory process is achieved 
through a negative feedback loop (Deng et al. 2010; Xin 
et al. 2018). The RhpSR system may play a role in the co-
regulation of T3SS and cellular maintenance, potentially 
enabling a broader interchange of metabolism and patho-
gen virulence in response to environmental factors, such 
as variations in nutrition accessibility (Zhou et al. 2015; 
2016; Xie et al. 2019). Nevertheless, the precise environ-
mental stimuli that regulate the activity of RhpSR have 
yet to be determined.

Another well-documented regulatory pathway, the cal-
cium-induced TCS CvsSR can influence the T3SS genes 
(Fishman and Filiatrault 2019). The CvsSR expression 
was significantly accumulated in DC3000 when exposed 
to exudes derived from the  leaves of tomatoes and by a 
calcium (Ca2+) cation (Fishman et  al. 2018). The plant 
apoplast contains plenty of Ca2+ ions, and it goes on 
increasing during bacterial infection in plants (Stael et al. 
2011). Moreover, the phosphorylated response regula-
tor CvsR binds to the inverted repeat element of hrpR 
and hrpS and some other regions inside the T3SS effec-
tor genes in the presence of calcium supplementation 
in T3SS-inducing minimal media and activates T3SS 
expression. The strain impaired in cvsS/cvsR resulted 
in reduced proliferation and disease symptoms on host 
plants, suggesting that CvsSR has a direct role in the viru-
lence of Pseudomonas strains (Fishman et al. 2018; Fish-
man and Filiatrault 2019). The CvsSR system has been 
found to indirectly inhibit the expression of AlgU, which 
was responsible for the positive regulation of the T3SS. 
The specific method by which CvsSR affects algU expres-
sion remains unknown, suggesting that the impact of 
CvsSR on T3SS dynamics may be intricate and multifac-
eted (Stael et al. 2011).

Inhibitors of the T3SS genes in pathogenic bacteria
T3SS inhibitors primarily consist of small molecular 
compounds that specifically interfere with the structural 
synthesis or functional expression of T3SS (Grier et  al. 
2010). Unlike traditional antibiotics, which target patho-
gen growth, T3SS inhibitors act specifically on the T3SS, 
significantly reducing the selective pressure driving 

pathogen resistance (Slepenkin et  al. 2011). Through 
extensive research on T3SS structure, expression regula-
tion, and virulence (Asif et  al. 2024a), a variety of plant 
extracts and small molecule T3SS inhibitors are reported 
(Yang et al. 2008; Puigvert et al. 2021; Wang et al. 2020). 
Screening T3SS inhibitors on plant pathogens has yielded 
analogs of some inhibitors found in animal pathogens 
and novel plant-derived and chemically synthesized com-
pounds (Slepenkin et  al. 2011). Initial screening efforts 
were focused on animal pathogens such as P. aeruginosa 
and Yersinia species, and their efficacy was proven for 
other pathogenic strains (Kowal 2013; Aguilera-Herce 
et al. 2023).

In the search for effective inhibitors targeting the T3SS 
in plant pathogens, several promising compounds have 
been identified. Salicylidene acylhydrazides, for instance, 
inhibit T3SS gene expression in R. solanacearum, reduc-
ing its virulence (Puigvert et  al. 2021). Phenolic com-
pounds like caffeic acid, released by plant roots in 
response to pathogen attacks, have also shown efficacy 
in reducing disease symptoms by affecting T3SS regula-
tion in R. solanacearum (Li et al. 2021). Coumarins, such 
as 7-methoxycoumarin, mitigate tobacco bacterial wilt 
caused by R. solanacearum through their impact on T3SS 
(Han et  al. 2021). Additionally, salicylic acid has been 
shown to inhibit T3SS in R. solanacearum by repress-
ing several virulence factors (Lowe-Power et  al. 2016). 
Cyclohexanone derivatives interfere with T3SS in X. 
campestris, reducing pathogenicity, while quinazolinone 
derivatives prevent T3SS assembly in Xanthomonas spe-
cies (Yang et  al. 2017). Moreover, 2-imino-5-arylidene 
thiazolidinone inhibits T3SS in E. amylovora, a pathogen 
causing fire blight in apple and pear trees, by blocking the 
secretion of T3SS effectors (Anantharajah et  al. 2017). 
These inhibitors offer promising leads for developing 
new control strategies against bacterial plant diseases by 
targeting T3SS, a critical virulence factor in many plant 
pathogens.

Further research is required to elucidate the mecha-
nism of action of these compounds and explore their 
potential value for preventing and controlling animal and 
plant diseases. Different inhibitors have different targets 
(Table 1), but we focused on three categories: inhibiting 
T3SS regulatory factors genes, inhibiting T3SS structural 
genes, and inhibiting T3SS effector proteins.

T3SS regulatory factor inhibitors
Plants can produce various secondary metabolites to 
resist pathogen infection. Most of these metabolites 
are toxic to pathogenic bacteria (Wang et  al. 2020). 
Sulforaphane (SFN) crude extracts was tested against 
DC3000 which damaged the expression of effector pro-
tein AvrPto, ultimately inhibits its T3SS expression 
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(Table 1; Wang et al. 2020). Further analysis revealed that 
SFN directly acted on the 209 amino acids of HrpS in 
DC3000, and competitively bind to HrpS to suppress the 
expression of T3SS. N-dihydroxybenzenes were obtained 
by screening the interaction between E. coli AraC fam-
ily regulatory factors (such as ExsA) and DNA binding 
regions. N-dihydroxybenzene binds to the C-terminal 
of P. aeruginosa ExsA, thereby preventing the binding of 
ExsA to the DNA promoter region. The biological activi-
ties of N-dihydroxybenzenes (Table  1) include reducing 
T3SS gene expression and T3SS-mediated in vitro viru-
lence (Grier et al. 2010; Marsden et al. 2016).

T3SS regulatory pathway inhibitors
Most of the T3SS inhibitors are hydroxycinnamic acid 
and its derivatives. Using the hrpA promoter reporter 
vector (pHrpA) and GFP-gene, hydroxycinnamic acid 
compounds from plant metabolites were screened by 
flow cytometry. Among them, o-coumaric acid and 
p-coumaric acid reduce the expression of T3SS by 
inhibiting related genes in the HrpX-HrpY pathway 
in E. amylovora (Li et  al. 2015;  Fan et  al. 2017), while 
4-methyl cinnamic acid and trans-2-methyl cinnamic 
acid (Table 1) subdued HrpS-HrpL pathway in X. oryzae 
pv. oryzae and E. amylovora, respectively. They can also 
inhibit T3SS expression related to the HrpG linked to 
HrpX pathway in rice pathogen (Fan et al. 2017, 2019; Shi 
et  al. 2023). Benzoic acid and ethyl-2-nitro-3-acrylates 
affect the HrpS-HrpL pathway in the Xanthomonas strain 
(Khokhani et al. 2013; Jiang et al. 2019).

Transcriptional and post‑transcriptional pathway inhibitors 
affecting T3SS
Salicylidene acetylhydrazides (SA) compounds are the 
class of T3SS inhibitors widely reported, explored, and 
first identified against the pathogenic bacterium Y. 
pseudotuberculosis. It can help mice resist the infection 
of Y. pseudotuberculosis and EHEC. SA compounds 
directly inhibit the activity of three secondary meta-
bolic synthase enzymes, WrbA, Tpx, and FolX, which 
indirectly affect the transcription of flagellar synthe-
sis genes and T3SS regulatory genes, thereby exerting 
the function of inhibiting T3SS (Slepenkin et  al. 2011; 
Anantharajah et  al. 2017). Trans-4-hydroxycinnamic 
acid (TMCA), screened from plant phenols, inhibits 
GacSA, RsmYZ-RsmA, and ExsA mediated regula-
tory pathway (Table  1). These compounds induce and 
regulate the expression of small RNA genes rsmY and 
rsmZ, which compete for RsmA to inhibit the expres-
sion of ExsA in P. aeruginosa. Subsequent studies have 
found that TMCA can also inhibit plant pathogens D. 

dadantii, and the RsmB-RsmA-HrpL regulatory path-
way in E. amylovora extends the inhibitory range of 
TMCA from animal pathogens to plant pathogens 
(Khokhani et al. 2013).

The needle/pilus structure and base protein formation 
inhibitors
The needle structure of T3SS is crucial for its functional 
performance, and the scale protein SctP can detect nee-
dle length during the synthesis process of needle-like 
structures. In plant pathogens, poorly developed needle-
like structures can affect the pathogen’s contact with 
the host’s cytoplasm, thereby affecting the transport of 
effectors. The most direct ways to suppress needle-like 
structures include subunit polymerization, inducing 
incorrect subunit folding, physically hindering the bind-
ing between subunits, or altering subunit polymerization. 
SA compounds also show inhibitory effects on the T3SS 
of S. typhimurium, Shigella spp., EHEC, X. oryzae, and 
E. amylovora (Anantharajah et  al. 2017; Fan et  al. 2017; 
Tao et al. 2019). SA did not affect the expression level of 
needle-like structure synthesis subunits in T3SS, thus 
suggesting that the assembly of T3SS was affected. Sub-
sequent observations under electron microscopy indi-
cated that the number of T3SS injection devices per cell 
decreased by 30.40% after SA treatment to Shigella spp., 
and the number of poorly developed needle-like struc-
tures significantly increased. Therefore, SA is considered 
a class of inhibitors that affect the assembly of needle-
like structures (Tao et al. 2019). The T3SS base attaches 
needle-like structures to bacterial cell membranes with 
two main parts: a lower ring connected to the inner 
membrane and an upper ring connected to the outer 
membrane through the periplasm. Due to the conserved 
nature of these base proteins across secretion systems 
and flagellar structures, targeting T3SS base proteins for 
inhibitors could lead to unintended effects (Abby and 
Rocha 2012; Diepold et  al. 2015). Thiazolidinones, par-
ticularly 2-imino-5-arylidene thiazolidinones (Table  1), 
interact with SctC, inhibiting base proteins in S. typh-
imurium T3SS and reducing effector secretion (Felise 
et  al. 2008). This inhibition is achieved by targeting the 
HBF1 homologous protein of SctC, affecting the effec-
tors’ excretion, like SipA and SspH1, without impact-
ing flagella motility (Kline et al. 2009). Considering their 
pedestal-like structure and conservation, HBF1 family 
proteins are promising targets for broad-spectrum T3SS 
inhibitors. The compound MBX2359, identified using a 
luxCDABE reporter system and the ExoT effector gene, 
and phenoxyacetamides discovered through screening 
over 80,000 compounds exemplify promising avenues for 
T3SS inhibitor development (Aiello et al. 2010).
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Future prospects
Over the last 25  years since its discovery, significant 
studies have been undertaken to unravel the intrica-
cies of the T3SS nanomachine. Despite the advance-
ments, challenges and gaps in knowledge that exist, 
future research endeavours should prioritize unravel-
ling the molecular mechanisms controlling the prior-
ity of secretion processes within a biological system, 
understanding the perception of secreted signals, and 
establishing a unified model for exploring the functions 
of effectors in relation to pathogenesis. Small genetic 
changes can fundamentally alter T3SS control, leading 
to diverse variations adapted to the specific lifestyles 
of different pathogens. Current research advancements 
highlight the incomplete understanding of T3SS regula-
tion, emphasizing the need to explore molecular mech-
anisms, including regulatory RNAs, under different 
infection conditions. Additional fundamental questions 
left unanswered include: Is the concept of an effector 
network universally applicable among pathogens utiliz-
ing a T3SS? Future research directions in understand-
ing bacterial pathogenesis could focus on elucidating 
the essential cellular processes targeted for sustained 
infection and identifying potential targets within these 
pathways. Investigating how molecular mechanisms 
identified in one bacterial strain extend to other strains, 
related species, or across bacterial families would pro-
vide insights into common virulence strategies and 
potential vulnerabilities. The study of post-transcrip-
tional control elements, such as sensory and regulatory 
RNAs, and their adaptation to intrinsic changes and 
regulatory rewiring is particularly intriguing. Under-
standing how these elements contribute to strain-spe-
cific variations advantageous for bacteria in diverse 
host niches could unveil novel targets for intervention 
and offer strategies for combating bacterial infections 
effectively.

Certain other basic trending questions include: Can 
artificial intelligence be implied to predict the essential 
cellular processes regarding T3SS? What are the molec-
ular targets of current T3SS inhibitors, and how do 
they interact with these targets? Can inhibitors’ speci-
ficity, potency, and efficacy be enhanced by leverag-
ing our understanding of T3SS function? How quickly 
will resistance to T3SS inhibitors emerge, and can it 
be managed through dose optimization, combination 
therapy, or the development of multi-target molecules 
similar to antibiotic strategies? What are the cellular 
repercussions when T3SS is inhibited? Does inhibition 
impose fitness costs, disrupt other virulence factors, 
trigger stress responses, interfere with quorum sensing, 
or induce resistance mechanisms?

Conclusions
The T3SS protein transports nanomachines found in 
most Gram-negative bacterial pathogens, which trans-
port effector proteins into the host cell cytoplasm, 
spanning the host cell membrane and causing infec-
tion. Many plant pathogens, like P. syringae, Ralstonia 
spp., and Xanthomonas spp., possess these T3SS appa-
ratuses, and their associated diseases are the cause of 
severe economic losses. A wide diversity of the hosts 
is affected by the T3SS-possessing pathogen, and their 
T3SS apparatus and secretion mechanisms are remark-
ably conserved. The probable interaction of the patho-
gens with the host and environmental cues, particularly 
regulate the response of phytobacterial T3SS. Differ-
ent studies found conflicting results regarding GacSA’s 
effect on T3SS expression, especially in P. syringae. 
Certain studies described it as a positive regulator, 
while others indicated it as a negative regulator. TCS-
oriented complications can be resolved by species and 
strain-specific studies. In addition to pesticides and 
antibiotics, T3SS inhibitors precisely target the T3SS 
instead of disturbing pathogen growth and cause no 
risk for resistance development. Different inhibitors 
have different targets, especially inhibiting regulatory 
factors genes, damaging functionality of structural 
genes forming proteins, and suppressing effector pro-
tein secretion. These target sites could be useful to 
develop more novel drugs to inhibit T3SS.
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