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Abstract

Bacterial insecticides have emerged as a biotechnological strategy for controlling insect pests in crops, primarily

due to the ineffectiveness of synthetic pesticides, which have led to resistance in insect populations due to their
overuse. For many years, Bacillus thuringiensis has been recognized as the most promising microorganism for this
purpose, while other entomopathogenic bacteria, which have demonstrated efficacy against various insect orders,
have been largely overlooked. These entomopathogenic bacteria employ diverse mechanisms to control insect pests,
including damage via contact or ingestion, disruption of intestinal cell integrity, interference with the insect’s central
nervous system, and alterations to reproductive processes. Among the insecticidal compounds produced by these
bacteria are Cry homologous toxins, non-homologous toxins, biosurfactant-type compounds, macrocyclic lactones,
lipopeptides, chitinases, and other metabolites that remain underexplored. This paper provides a comprehensive
overview of the current state of lesser-known entomopathogenic bacteria utilized in the development of these
biopesticides. It discusses the advantages and disadvantages of these biotechnological products, the mechanisms

of action of entomopathogenic bacteria, genetic engineering strategies aimed at enhancing these biopesticides,

and the application of these bacteria in commercial production. Additionally, the paper reviews patents related to this
field and examines the role of insecticidal bacteria as inducers of systemic resistance (ISR) in plants, highlighting their
potential for the development of commercial bioproducts.

Keywords Entomopathogenic bacterial, Insect, Commercial products, Patents

Introduction

The intensification of agriculture driven by population
growth is becoming increasingly apparent, with pro-
jections indicating that agricultural production must
increase by 70% by 2050 to meet rising food demands
(Sunjka et al. 2022). However, this intensification is
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accompanied by significant economic losses worldwide,
primarily due to plant pathogens that have developed
resistance to traditional pesticides, which can result
in losses of up to 42% in major crops (Glare et al. 2012;
Aneja et al. 2016; Samada et al. 2020).

Currently, several alternatives exist for managing plant
pathogens, including the development of resistant crop
varieties and the use of synthetic agrochemicals. How-
ever, the latter approach has notable limitations. Environ-
mental problems stemming from excessive chemical use
in agroecosystems have become evident, leading to issues
such as the emergence of pest resistance, the elimina-
tion of beneficial microorganisms and non-target organ-
isms, the rapid proliferation of secondary pests, and the
accumulation of pesticide residues in food, which poses
potential health risks, including cancer and fetal damage
(Gupta and Dikshit 2010; Singh et al. 2014; Mishra et al.
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2015; Hakim et al. 2020; Kumar et al. 2021; Perez et al.
2011; Hernandez et al. 2022).

In light of these challenges, biopesticides have been
developed as biotechnological products that offer an eco-
logical and sustainable alternative to chemical pesticides
in agroecosystems (Glare et al. 2012; Prabha et al. 2017;
Hakim et al. 2020). Research indicates that biopesticides
can outperform synthetic pesticides when applied at
optimal times and concentrations (Shah et al. 2013). Fur-
thermore, they effectively reduce product losses without
compromising quality and are considered environmen-
tally friendly due to their biodegradable nature (Leng
et al. 2011; Kumar et al. 2021).

The United States Environmental Protection Agency
(EPA) categorizes biopesticides into three groups based
on their active ingredients: plant-incorporated protective
agents (PIPs), which are produced through transgenic
methods that induce the synthesis of natural insecticidal
compounds in plant tissues; biochemical biopesticides,
which are derived from natural compounds produced by
insects and plants; and microbial pesticides, which are
based on bacteria, fungi, viruses, or microalgae (Gupta
et al. 2010; Seiber et al. 2014; Nathan et al. 2014; Mishra
et al. 2015; Aneja et al. 2016; Kachhawa 2017; Lengai
et al. 2018; Hakim et al. 2020) (Fig. 1).

Bacterial insecticides are natural formulations derived
from live bacteria or their metabolites, specifically
designed to control insect pests through highly specific
mechanisms while exhibiting low toxicity to non-target
organisms, including beneficial insects (Thakore 2006;
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Mazid et al. 2011; Nathan et al. 2014; Kumar and Singh
2015; Hakim et al. 2020).

Historically, most commercial products have been
developed from the bacterium Bacillus thuringiensis (Bt).
In fact, products based on the genus Bacillus represent
the most significant class of commercially available crop
protection products (Jacobsen et al. 2004; Samada et al.
2020). However, other notable bacterial genera have not
received adequate recognition. This review will focus on
the exploration of alternative entomopathogenic bacte-
ria as a foundation for formulating biopesticides. It will
discuss insecticidal molecules and their modes of action,
highlight some commercial products, outline genetic
engineering strategies employed in their production, and
present patents awarded or in progress related to these
products and their role as inducers of systemic resistance
(ISR) in plants as part of the state of the art.

Bacterial insecticides: advantages and disadvantages

Bacterial insecticides were first developed in the 1950s
and, due to their ease of mass production, became the
first microbial pesticides to be commercialized. For
over 40 years, these products have been in use and cur-
rently account for 90% of biopesticides marketed globally
(Nathan et al. 2014; Osman et al. 2015; Tabashnik and
Carriére 2017; Villareal et al. 2017; Kumar et al. 2021).
While these insecticides offer advantages such as high
effectiveness and specificity, they also face challenges,
including low stability, high production costs, and incon-
sistent results in field trials (Cooping and Menn 2000;
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Fig. 1 Types of biopesticide according to the United States Environmental Protection Agency (EPA)
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Gullino et al. 2005; Hynes and Boyetchko 2006; Gupta
et al. 2010; Xu et al. 2011; Chandler et al. 2011; Leng et al.
2011; Glare et al. 2012; Gasic and Tanovic 2013; Bhat-
tacharjee and Dey 2014; Siever et al. 2014; Ritika and
Utpal 2014; Mishra et al. 2015; Mnif et al. 2015; Kumar
and Singh 2015; Tijjani et al. 2016; Aneja et al. 2016; Shi-
beru et al. 2016; Kachhawa 2017; Lengai et al. 2018; Sam-
ada and Tambunan 2020; Hakim et al. 2020; Kumar et al.
2021) (Fig. 2).

Entomopathogenic bacteria as insecticides

By the 1980s, approximately 100 bacteria had been
identified as entomopathogenic, yet only four Bacillus
thuringiensis, Bacillus popilliae, Bacillus lentimorbus,
and Bacillus sphaericus had been extensively studied
as agents for insect control (Miller et al. 1983). Among
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these, Bacillus thuringiensis (Bt) has received the most
attention, leading to the development of commercial
products. Bt is a Gram-positive, spore-forming bacte-
rium that is non-pathogenic to humans and typically
found in soil and the guts of various insects, particularly
Lepidoptera. Globally, there are around 175 registered
biopesticides with approximately 700 active compounds
available for use (Hakim et al. 2020). In the United States,
over 150 commercial products are available, while the
European Union market features only 60 analogous prod-
ucts (Kumar 2021).

Bacteria used as pesticides can be either Gram-positive
or Gram-negative. Gram-positive bacteria can be further
classified into endospore-forming and non-endospore-
forming types, with endospore-forming bacteria being

Highly effective and specific for the target insect.

They do not require repeated application.

Low toxicity for pollinators and compatibility with other
natural enemies.

Many commercial products have already been registered
in the agromarket.

They can be used in rotation with synthetic pesticides to delay
pest resistance to chemical inputs.

Environmental safety and biodegradability.

Less time before

registration with
compared to that of conventional chemical products.

regulatory entities

|Laborious and expensive production methods compared to a
isynthetic pesticide, so the level of implementation is low.

Short shelf life due to rapid degradation by UV light.

High doses of the active compound are required to be
effective under field conditions.

Registration process requires toxicological studies, which
may restrict this process.

-

ADVANTAGES
\ BACTERIAL  |— /
o) | INSECTICIDES [&
/U
DISADVANTAGES

Promising in vitro results, but inconsistencies with field results
due to low product stability.

Slow speed of action on the pest insect. lack of persistence at the
plant level.

Limited potential market due to species-specific products.

Effects and risk associated with the release of living organisms
into the environment.

Fig. 2 Advantages and disadvantages of using bacterial insecticides
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Fig. 3 Classification of entomopathogenic bacteria used as biopesticides

the most widely studied for commercial applications
(Kumar et al. 2021) (Fig. 3).

Currently, a wide diversity of bacteria is recognized
for their potential use in the production of bioinsec-
ticides. Most of these bacteria belong to the families
Bacillaceae, Pseudomonadaceae, Enterobacteriaceae,
Lactobacillaceae, Micrococcaceae, and Streptococ-
caceae (Ruiu 2015; Kachhawa 2017; Azizoglu et al.
2020). Notable species within the Bacillaceae fam-
ily include Bacillus subtilis, Bacillus pumilus, Bacillus
amyloliquefaciens, Bacillus megaterium, and Bacillus
licheniformis, as well as Paenibacillus popilliae and
Brevibacillus laterosporus (Mnif et al. 2015; Villareal
et al. 2017). Additionally, species from the Pseudomon-
adaceae family, such as Pseudomonas entomophila and
Pseudomonas aeruginosa, along with those from the
Yersiniaceae family like Yersinia entomophaga, are also
noteworthy (Raaijmakers and Mazzola 2012; Prabha
et al. 2017; Villareal et al. 2017; Kumar et al. 2021). Fur-
thermore, insecticidal bacteria of the genera Xenorhab-
dus and Photorhabdus form a symbiotic relationship
with entomopathogenic nematodes from the genera
Steinernema and Heterorhabditis. During infection, the
nematode acts as a vector, transporting the bacteria to
the larva of the target insect, where the bacteria are

Pseudomonas entomophila
Pseudomonas chlororaphis
Pseudomonas aeruginosa
Burkholderia cepacia
Yersinia entomophaga
Serratia entomophila
Chromobacterium subtsugae
Xenorhabdus nematophila
Photorhabdus luminescens

disseminated into the hemolymph, leading to septice-
mia (Chattopadhyay et al. 2004) (Table 1).

Mechanisms of action of entomopathogenic bacteria
Entomopathogenic bacteria employ various mechanisms
to infect, colonize, and ultimately eliminate their insect
hosts. The primary strategies include inducing contact
damage, producing toxins that disrupt the insect’s diges-
tive system, generating molecules that target the insect’s
nervous system, and interfering with reproduction and
development. These mechanisms can operate indepen-
dently or in synergy, enhancing their overall effectiveness
(Jurat-Fuentes and Jackson 2012).

Production of contact damage

Chitinases are enzymes that degrade chitin, a structural
polysaccharide found in the exoskeletons of insects and
crustaceans. Chitin plays a crucial role in preventing
water loss and forming a protective barrier against patho-
gens and environmental stressors (Veliz et al. 2017). The
degradation of chitin can weaken the exoskeleton, ren-
dering the insect unable to support its own weight and
increasing its susceptibility to microbial infections. Addi-
tionally, the presence of these enzymes can disrupt the
molting process, leading to improper formation of the
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new exoskeleton, which may result in deformities, inabil-
ity to shed the old exoskeleton, or death during molting
(Winssy et al. 2024). Bacteria that produce such enzymes
include Serratia spp. and certain actinomycete species
such as Streptomyces spp. (Kwak et al. 2015).

Production of gut-level damage

Many entomopathogenic bacteria produce lethal toxins,
which can be proteins, peptides, or secondary metabo-
lites that interfere with vital physiological processes in
insects. Approximately 90% of bacterial insecticides are
derived from endotoxin-producing bacteria that enter
the insect when larvae consume plant leaves (Mishra
et al. 2015; Kachhawa 2017). Once ingested, these bac-
teria are lysed by the alkaline environment of the gut,
releasing toxins as inclusions or inactive protoxins. These
protoxins are then solubilized and activated by proteases,
such as trypsin (Drobniewski et al. 1989; Ruiu et al. 2018).
During activation, peptides from the N-terminal and
C-terminal regions are cleaved by proteases, generating
the active toxin, which binds to receptors on the mem-
branes of intestinal epithelial cells. This binding triggers
a conformational change in the toxin, forming crystalline
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inclusions that create pores or ion channels within the
receptors, leading to cell lysis and disruption of transport
processes. Consequently, the insect becomes paralyzed,
ceases feeding, and ultimately dies from starvation within
48 h (Jisha et al. 2013) (Fig. 4).

Some variants of insecticidal toxins exhibit species-
specific activity (Nathan et al. 2014; Aneja et al. 2016;
Kachhawa 2017; Jurat et al. 2012). Variations in the gene
sequences of these toxins can lead to different affinities
for gut receptors, resulting in distinct insecticidal activi-
ties among various bacteria (Pigott et al. 2007). The mol-
ecules studied from the aforementioned bacteria display
significant chemical diversity, with some not yet fully
characterized. This challenges the notion that only pro-
teins homologous to the Cry proteins of Bacillus thur-
ingiensis (Bt) possess insecticidal properties. While most
mechanisms of action for these entomopathogenic bac-
teria involve ingestion or contact, the specifics remain
unclear for other species, particularly regarding their
biological targets, which include insects from the orders
Lepidoptera and Coleoptera. Utilizing sporulated bacte-
ria in product development enhances viability and stabil-
ity over time (Villareal et al. 2017).
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Examples of diseases caused by Cry-like proteins
include Cbm 17.1 and Cbm 17.2, produced by Para-
clostridium biofermentans, which are highly effective
against flies and mosquitoes (Qureshi et al. 2014). Addi-
tionally, Paenibacillus popilliae is responsible for milky
spore disease in beetles, characterized by an opaque
white coloration due to the accumulation of sporulating
bacteria in the hemolymph. This disease can be fatal if
the infective dose of spores is sufficiently high during the
early stages of larval development (Grady et al. 2016).

Another spore-producing bacterium, Lysinibacillus
sphaericus, is a facultatively aerobic, terminally spore-
forming, and motile bacterium found in soil and aquatic
environments. It utilizes amino acids and organic acids
as carbon sources, as it lacks genes for sugar-degrading
enzymes. This bacterium can accumulate hydrocarbons
and immobilize heavy metals due to its paracrystalline
S-layer. Strains of Lysinibacillus sphaericus have shown
high larvicidal efficacy, producing a toxin similar to that
of Bt, which typically damages the epithelial microvilli in
the insect midgut. This leads to the cessation of feeding
and ultimately the insect’s death (Kumar et al. 2021).

Involvement of the insect nervous system and behavior
Certain bacteria can impact the nervous systems of
insects as direct pathogens, behavior-modifying symbi-
onts, or as causative agents of specific neurological dis-
eases (Table 1). For instance, Streptomyces rubrisoli and
Saccharopolyspora spinosa produce macrocyclic lactones
that affect insect nervous systems, leading to paralysis
and eventual death. Examples of these molecules include
the avermectins—such as emamectin, avermectin, iver-
mectin, and abamectin and milbemycins, including
milbemectin. Both classes of lactones have been utilized
as antiparasitics in animals and for insect control in vari-
ous crops (Pérez-Cogollo et al. 2018).

These compounds reach nerve endings and trigger the
release of gamma-aminobutyric acid (GABA), causing
GABA-activated Cl” ion channels to open. This hyper-
polarizes the membrane potential of nerve cells, blocking
signal transmission to the insect’s peripheral nervous sys-
tem and inhibiting neurotransmitter release, ultimately
resulting in paralysis (Martin et al. 2002; Khan and Khan
2023). Unlike other avermectins, spinosins activate nico-
tinic receptors on the postsynaptic membrane through
an unknown mechanism, leading to nervous system
excitation, prostration, and paralysis. Some avermec-
tins may also affect other physiological systems in target
organisms. For example, ivermectin can impair muscle
function and excretion in parasites, facilitating the clear-
ance of infestations (Gonzalez et al. 2009; Lumaret et al.
2012). Marques et al. (2020) evaluated a spinosad-based
formulation called Tracer® on the stingless bee foragers,
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Plebeia lucii Moure (Apidae: Meliponini), and found that
bee locomotion, both walking and flying, was reduced
with increasing spinosad concentrations.

Interference with insect reproduction and development
Wolbachia pipientis is a Gram-negative bacterium
belonging to the order Rickettsiales that affects the
reproductive systems of its hosts. This endosymbiotic
bacterium predominantly resides in the gonads of vari-
ous insects, with some estimates suggesting that approxi-
mately 16% of arthropods harbor Wolbachia spp. It can
also infect spiders and mites (Kaur et al. 2021). Wol-
bachia is known to induce several reproductive pro-
cesses, including feminization, parthenogenesis, male
killing, and cytoplasmic incompatibility (Shropshire et al.
2020).

Feminization leads to genetic males developing phe-
notypically as females, though the molecular mecha-
nisms underlying this process remain unknown. In cases
of parthenogenesis, uninfected species typically exhibit
arrhenotokous parthenogenesis due to their haplodip-
loid sex determination system. However, virgin mothers
infected with Wolbachia produce all-female offspring
from their unfertilized eggs, switching from arrhenotok-
ous to telitokous parthenogenesis. Male killing results in
a female-biased sex ratio in several arthropods by selec-
tively eliminating males (Fukui et al. 2015). Additionally,
this bacterium has potential applications in controlling
nematodes and parasites, such as Plasmodium spp., the
causative agents of malaria (Bourtzis et al. 2014).

Burkholderia cepacia is an aerobic, motile, non-fer-
menting, Gram-negative bacterium known for its signifi-
cant metabolic versatility. It is important for colonizing
soil, water, and plants and serves as a symbiont in legume
root nodules (Rojas-Rojas et al. 2019). This bacterium
has successfully colonized the guts of insects, leading to
reduced egg deposition. In contrast, Spiroplasma spp.,
belonging to the group Mollicutes, are helicoid-shaped
bacteria that lack a cell wall and are obligate symbionts in
certain insects. They feed on trehalose, the predominant
sugar in insect hemolymph, causing symptoms such as
tremors, paralysis, and behavioral changes. In Drosophila
melanogaster, infection with Spiroplasma melliferum has
been associated with increased mortality of male progeny
during embryonic or larval stages and a female-biased
sex ratio in subsequent generations, although the under-
lying mechanism remains unclear (Anbutsu and Fukatsu
2011).

Genetic engineering strategies for the improvement

of genes encoding insecticidal molecules

Advancements in molecular biology, genetic engineering,
and protein engineering have facilitated the development
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of bacterial insecticides (Azizoglu et al. 2020). Initial
genetic modifications of biopesticides employed recom-
binant DNA technology and protein engineering in Bacil-
lus thuringiensis, particularly in the subspecies Kurstaki,
to create strains with novel insecticidal proteins effective
against codling moths in maize (All et al. 1994; Federici
et al. 2005). As of 2012, there were no commercially avail-
able biopesticides based on genetically modified micro-
organisms due to regulatory constraints (Glare 2012).
However, genes encoding insecticidal toxins have now
been isolated, characterized, manipulated, and expressed
in various organisms to create new combinations of tox-
ins with broader activity (Azizoglu et al. 2020). Recombi-
nant DNA technologies have been employed to enhance
insecticidal efficacy by increasing protein synthesis and
facilitating the creation of new endotoxin combinations
(Karaborkli et al. 2018). Furthermore, genetic engineer-
ing can enhance the resilience of entomopathogens to
adverse environmental conditions, potentially increasing
their effectiveness in the field (Azizoglu et al. 2020).

These approaches have primarily targeted entomopath-
ogenic bacteria from the genera Bacillus, Lysinibacil-
lus, and Pseudomonas (Azizoglu et al. 2020). A notable
study reported the transformation of the crylAb gene
from Bacillus thuringiensis strain LM-466 into B. subti-
lis and B. licheniformis strains, evaluating their insecti-
cidal activity against Tuta absoluta larvae, with an LC50
comparable to that of the original B. thuringiensis strain
(Theoduloz et al. 2003). Other cry and cyt genes from
B. thuringiensis have been transferred to Lysinibacillus
sphaericus strains, resulting in tenfold increased toxicity
against Culex spp. (Federici et al. 2003).

Research has also focused on Serratia entomophila,
where a plasmid carrying the sepABC genes, responsible
for inducing feeding cessation and mortality in Costelytra
zealandica larvae, was inserted into Escherichia coli.
The recombinant strains displayed the desired insecti-
cidal traits (Hurst et al. 2004). An alternative approach
involves the transconjugation of endotoxin-encoding
genes in plasmids or cloning Bacillus thuringiensis genes
for expression in alternative hosts such as Pseudomonas
fluorescens, a common plant-associated bacterium, or
other endophytic microorganisms (Federici et al. 2005).

Liu et al. (2010) identified the toxin production gene
(tccC) in Pseudomonas taiwanensis, which was over-
expressed in E. coli, resulting in increased mortality in
Drosophila melanogaster. In another study, the chiABC
gene from Serratia marcescens was inserted and overex-
pressed in E. coli, yielding recombinant chitinases that
exhibited up to 80% insecticidal activity against Malaco-
soma neustria and Helicoverpa armigera (Danismazoglu
et al. 2015). Finally, Zhang et al. (2020) conducted
genome reduction of Bacillus amyloliquefaciens LL3
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through metabolic engineering to enhance surfactin
production, a lipopeptide biosurfactant with potential
insecticidal properties. The original strain’s sfrA operon,
crucial for surfactin production, was optimized by
removing unnecessary genomic regions, promoting rapid
growth and high operon expression (Zhang et al. 2020).

Another strategy for plant protection against insects
involves transferring genes encoding insecticidal proteins
to crops. This approach minimizes the need for continu-
ous insecticide application, as it facilitates the constant
production of Bt proteins (Federici et al. 2005). However,
studies indicate that only genes derived from Bacillus
thuringiensis have been effectively transferred to vari-
ous plant species such as cotton, tomato, and eggplant,
yielding economic benefits for growers (Leng et al. 2011;
Nathan et al. 2014; Siever et al. 2014; Mishra et al. 2015).
In contrast, research involving other entomopathogenic
bacterial species remains in its early stages.

While recombinant DNA technology offers the poten-
tial to modify insecticide modes of action by altering
host specificity or enhancing efficacy, regulatory restric-
tions on the use of genetically modified organisms
(GMOs) have made research in this area less appealing
for commercial product development. Concerns about
the potential for gene flow to wild species, development
of insect resistance, and negative impacts on beneficial
organisms further complicate the landscape (Azizoglu
et al. 2020).

Bacterial insecticides as commercial products

The European Union currently leads the global mar-
ket for commercial biological control products, offering
incentives for the registration of low-risk biological con-
trol agents (Glare 2012). In contrast, bacterial insecti-
cides in the United States are regulated by the Division of
Biopesticides and Pollution Prevention within the Envi-
ronmental Protection Agency (EPA) (Leahy et al. 2014).
Despite existing regulations, there is a pressing need for
enhancements to current legislation (Kumar et al. 2021)
to streamline the registration process for new products,
especially in developing countries. The lengthy and costly
nature of current registration procedures poses signifi-
cant challenges (Kumar et al. 20164, b).

While biopesticides represent only 5% of plant protec-
tion products worldwide, their growth has accelerated in
recent decades. Hakim et al. (2020) report that there are
currently 175 biopesticides registered globally, encom-
passing 700 active substances. The biopesticide mar-
ket was valued at approximately $3 billion in 2013 and
is projected to reach $4.5 billion by 2023 (Lahlali et al.
2022; Hernandez et al. 2022). Notably, products derived
from Bacillus, Burkholderia, Pseudomonas chlororaphis,
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Table 2 Commercial products made from different entomopathogenic bacteria
Trade name Entomopathogenic bacterium Target insect References

Nortica 10 WP, VOTIVO FS seed treatment Bacillus firmus Nematodes Arthurs and Dara

Bionemagon (2019), Ruiu (2018)

Majestene, Venerate Burkholderia spp Chewing insects and mites Ruiu (2018)

Tracer ™ 120, Conserve Saccharopolyspora spinosa Unspecified insects Ruiu (2018)

Grandevo Chromobacterium subtsugae Chewing insects and mites Ruiu (2018)

Vectolex® GC Lysinibacillus sphaericus Unspecified insects Cooping and Menn
(2000)

Cedomon®, Cerall®, Cedress®

Bioshield"™ Serratia entomophila

Pseudomonas chlororaphis

Anderson et al. (2018)

Cooping and Menn
(2000)

Unspecified insects
Unspecified insects

and Serratia entomophila are among the most effective
against various orders of insects (Table 2).

The development of a commercial product is a com-
plex, multi-step process that begins with the selection
of promising microorganisms. These are initially evalu-
ated through in vitro tests against various pathogens
using techniques such as disc diffusion, agar well diffu-
sion, and the poisoned food technique before undergo-
ing larger-scale assessments (Jahangiriana et al. 2013). It
has become evident that many microorganisms deemed
promising at the in vitro level often fail to perform effec-
tively in greenhouse formulations, rendering them unfea-
sible as commercial products (Hynes and Boyetchko
2006).

The active component may consist of metabolites
produced by a microorganism. In such cases, various
analytical techniques, including thin-layer chromatog-
raphy (TLC), high-performance liquid chromatography
(HPLC), and gas chromatography coupled with mass
spectrometry (GC-MS), are employed for characteriza-
tion (Lengai et al. 2018). Following this, the fermenta-
tion stage is critical, requiring careful consideration of
the type of fermentation (solid or submerged), culture
medium composition, oxygen transfer, incubation tem-
perature, collection timing, and additional treatments
(Montazeri and Greaves 2002).

Next, the formulation of the active compound begins.
At this stage, it is essential to optimize the combina-
tion of active ingredients, carrier materials, emulsifiers,
surfactants, and other components to enhance stabil-
ity and efficacy while minimizing degradation from
environmental factors during field application (Lengai
et al. 2018; Hynes and Boyetchko 2006). The initial step
involves selecting an appropriate carrier that facilitates
the controlled release of the active ingredient. Inert
materials, such as petroleum distillates, starch, talc,
clay, and water, serve as stabilizers to prolong the shelf
life of the product. Additionally, emulsifying agents
or surfactants, such as soap, may be incorporated to

enhance effectiveness (Lengai et al. 2018). Adjuvants
that conserve moisture and protect the active ingre-
dient from UV radiation or desiccation must also be
selected based on microbial physiology studies (Burges
1998; Boyetchko et al. 2002; Hynes and Boyetchko
2006).

Another important consideration during formulation
is enhancing the controlled release of the active com-
pound by testing various product presentations. For
example, slow-release granules or spray formulations
for foliar applications could improve coverage with the
active agent (Glare 2012). Despite progress in these
areas, unexpected challenges in the fermentation and
formulation processes, as well as inadequate market
management, have led to unfinished products or the
withdrawal of products from the market (Hynes and
Boyetchko 2006).

While advancements have been made in developing
commercial products based on various entomopatho-
genic bacteria, Bacillus thuringiensis (Bt)-based products
maintain a competitive edge. This advantage stems from
years of research on Bt, which has elucidated its biology,
mechanisms of action, and spectrum of efficacy. Such
foundational knowledge has informed improvements in
product manufacturing, including the selection of suit-
able carriers for controlled release, effective application
methods, strategies for extending product shelf life, and
safety assurances. These factors contribute to lower pro-
duction costs and increased profitability for manufactur-
ers. However, despite these advances, limitations remain,
including rapid deactivation upon light exposure, short
duration of activity, low lethality, and high sensitivity to
environmental conditions (Ayilara et al. 2023). Contin-
ued research is essential to overcome these challenges
and establish competitive alternatives for managing
insect pests.
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Patents related to bacterial insecticides

To date, patents related to the production of bacterial
insecticides based on entomopathogenic bacteria other
than Bacillus thuringiensis (Bt) are limited. This scarcity
may be attributed to the insufficient large-scale produc-
tion studies of these alternative bacterial inputs and the
challenges associated with optimizing their formulations.
The existing patents primarily focus on the production of
insecticidal metabolites derived from certain species of
phytopathogenic bacteria or improvements in the syn-
thesis of these compounds through genetic engineering
processes. The countries most active in this field include
the United States and the European Union (Table 3).

Entomopathogenic bacteria that can induce systemic
resistance (ISR) in plants

Induction of systemic resistance (ISR) is a physiological
state that enhances a plant’s defense capacity, elicited by
plant growth-promoting rhizobacteria (PGPR). These
bacteria can induce local resistance and subsequently
transfer it to other parts of the plant, achieving global
induction (Ilham et al. 2019). In response to pathogen or
insect attacks, as well as abiotic stresses, plants can rap-
idly activate various cellular defense mechanisms, includ-
ing increased activity of chitinases, B-1,3-glucanases, and
peroxidases, along with the accumulation of phytoalexins
and the formation of protective layers composed of lignin
and hydroxyproline-rich glycoproteins (Archana et al.
2011; Jatoi et al. 2019). Among the genera recognized as
inducers of systemic resistance are some insecticidal bac-
teria previously discussed in this review, underscoring
their potential relevance as bioproducts.

Wei et al. (1996) conducted greenhouse studies that
demonstrated the ability of the PGPR Bacillus pumi-
lus INR7 to promote plant growth and induce systemic
resistance against cucumber diseases. When applied as
a seed treatment, this strain significantly increased pro-
tection against anthracnose caused by Colletotrichum
orbiculare. Furthermore, a combined inoculation of
Bacillus pumilus INR7, Curtobacterium flaccumfaciens
MEI, and Bacillus subtilis GBO effectively controlled
cucumber angular leaf spot caused by Pseudomonas
syringae pv. lachrymans (Raupach et al. 2000).

Li et al. (2020) evaluated rhizospheric isolates from
tobacco and found that B. pumilus strain S2-3-3 signifi-
cantly reduced disease severity in tobacco by inducing
systemic resistance while also promoting growth through
the production of indoleacetic acid (IAA). In bell pep-
per plants, disease severity decreased when roots were
drenched with strain §2-3-2, leading to enhanced plant
weight and chlorophyll content compared to untreated
controls. Ilham et al. (2019) highlighted selected strains
of Bacillus amyloliquefaciens (I13) and Trichoderma
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harzianum in inducing systemic resistance in Arabidop-
sis thaliana, revealing that these microorganisms can
trigger defense pathways associated with salicylic acid
and jasmonic acid, unlike plants treated with chemical
elicitors.

Abdelkhalek et al. (2020) reported the antiviral activ-
ity of Bacillus licheniformis strain POT1 against alfalfa
mosaic virus (AMYV) in potato plants. Dual foliar appli-
cations of crop filtrate 24 h before and after inoculation
with AMV proved most effective, resulting in an 86.79%
reduction in viral accumulation and improvements in
various growth parameters. Transcriptional analysis
indicated that thirteen genes related to phenylpropa-
noid, chlorogenic acid, and flavonoid biosynthetic path-
ways were induced after treatments, with anthocyanin, a
type of flavonoid, playing a crucial role in plant defense
against viral infection.

Bharathi et al. (2004) found that Bacillus subtilis pro-
vided protection against rot and progressive death of chili
bell pepper (Capsicum annuum) fruits caused by Colle-
totrichum capsici, and PGPR significantly enhanced seed
germination and seedling vigor. Saravanakumar et al.
(2007) evaluated bioformulations of PGPR (Pseudomonas
sp. and Bacillus subtilis) for their efficacy against vesicu-
lar blight disease (Exobasidium vexans) in tea (Camel-
lia sinensis) under field conditions, finding that foliar
applications consistently reduced the incidence of blight
disease.

Wang et al. (2015) identified and characterized a
protein elicitor secreted by Brevibacillus laterosporus
strain A60, named PeBL1. When expressed in Escheri-
chia coli, this recombinant protein induced a hyper-
sensitive response (HR) and systemic resistance in
Nicotiana benthamiana, triggering a cascade of plant
defense responses, including reactive oxygen species
(ROS) production and phenolic compound deposition.
In a related study, Jatoi et al. (2019) reported that the
protein inducer PeBL2 (17.2 kDa) encoded by the PeBL2
gene could similarly induce HR in tobacco, generating
ROS and systemic resistance against Botrytis cinerea.

Shabanamol et al. (2017) explored the biocontrol
mechanisms of Lysinibacillus sphaericus, a diazotrophic
endophyte of rice, against the rice sheath blight patho-
gen Rhizoctonia solani. This endophyte induced sys-
temic resistance, achieving 100% growth inhibition of
the fungal pathogen through the production of volatile
organic compounds and siderophores, as well as hydro-
gen cyanide (HCN) and ammonia. Under greenhouse
conditions, foliar and soil applications of L. sphaericus
significantly reduced disease incidence by accumulating
defense enzymes, including peroxidases and polyphe-
nol oxidases, and enhancing phenolic compound levels.
Kumar et al. (2016a, b) found that inoculation of tobacco
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plants with Paenibacillus lentimorbus B-30488 increased
the accumulation of defense-related enzymes in response
to cucumber mosaic virus infection.

Kim et al. (2008) reported that root colonization by
Pseudomonas chlororaphis O6 in cucumber induced ISR
against Corynespora cassiicola. Molecular studies identi-
fied the cucumber galactinol synthetase gene (CsGolSI),
with transcription levels increasing upon treatment with
strain O6, correlating with heightened resistance to Bot-
rytis cinerea and Erwinia carotovora. Khalimi et al. (2011)
evaluated formulations of P aeruginosa to enhance
growth and induce ISR in soybean plants against soybean
stunting virus under greenhouse conditions. These for-
mulations significantly increased plant growth, reducing
disease incidence from 15 to 80%, while untreated plants
exhibited up to 90% infection rates.

Finally, Ezziyyani et al. (2017) demonstrated that inoc-
ulating bell pepper stems with Phytophthora capsici and
treating the roots with antagonists Burkholderia cepacia
and Trichoderma harzianum together induced a defen-
sive response. Stem infection resulted in a hypersensitive
reaction, but necrosis was slowed in plants treated with
both antagonists, evidenced by increased production of
proteins with p-1,3-glucanase activity, a component of
the hypersensitive defense system.

Conclusion

The production of commercial bacterial bioinsecticides
is a complex process that requires extensive research and
multiple stages of development. While a microorgan-
ism may demonstrate effectiveness in laboratory settings
(in vitro), it may not perform as expected in field condi-
tions. Challenges in scaling up production and formulat-
ing these microorganisms need to be addressed to ensure
viable market management. Despite these hurdles, the
production of bacterial bioinsecticides has significantly
increased worldwide, particularly in developed countries.
Current market offerings predominantly include mix-
tures of bacteria, such as various species within the genus
Bacillus (e.g., B. chitinosporus, B. mycoides, B. pumilus,
and B. subtilis). These bacteria produce toxins analo-
gous to Cry proteins, which can cause intestinal damage
and starvation in target insects. Additionally, certain
actinomycetes, like Streptomyces species, cause contact
damage, while bacteria such as Streptomyces rubrisoli
and Saccharopolyspora spinosa produce macrocyclic
lactones that affect the insect nervous system. Other
notable microorganisms, including Wolbachia pipien-
tis, Burkholderia cepacia, and Spiroplasma melliferum,
can disrupt the reproductive systems of their hosts.
With the advancement of genetic engineering, there has
been manipulation of genes encoding insecticidal toxins
across various organisms to create novel combinations
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that enhance efficacy, broaden the spectrum of action
against additional insect species, and increase resistance
to environmental factors. Moreover, efforts are under-
way to transfer genes encoding insecticidal proteins into
plants, which could reduce the need for repeated insec-
ticide applications in crops. In addition to their insecti-
cidal properties, some of these bacteria can also enhance
systemic resistance (ISR) in plants, thereby increasing
interest in developing commercial bioproducts. How-
ever, legislative changes are necessary to streamline the
product registration process, which is currently lengthy
and costly in many countries. Such reforms are essential
for bacterial bioinsecticides to compete with traditional
chemical insecticides on price, achieve mass produc-
tion, and contribute positively to soil health and environ-
mental sustainability. Furthermore, additional research
is required to provide scientific evidence that addresses
regulatory concerns about genetically modified organ-
isms, particularly regarding potential gene flow to wild
species, insect resistance development, and ecological
impacts. This approach will help mitigate resistance and
apprehension among regulatory bodies, facilitating the
responsible release of beneficial microbial products.
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