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Abstract 

Plant pathogenic bacteria are one of the most important threats to agriculture production, diminishing the growth 
and development of host crops. Bacterial diagnostic is based on traditional microbiological methods, including isola‑
tion, purification, and a further confirmatory immunological or molecular test for accurate identification. In this work, 
we present the design and fabrication of a plasmonic optoelectronic sensor based on seven “olfactory receptors” 
formed by seven gold nanoparticle (AuNP) morphologies, including nano bones, nanospheres, nanorods, and nano 
shuttles with two sizes and nanostars. The AuNPs work as a central part of the sensor for color change analysis, 
the principle of which is based on the reduction of Tollens’ reagent with aldehydes produced by the tested phy‑
topathogenic bacteria during their growth. Depending on the concentration and redox potential of the produced 
aldehydes, the reduction of Tollens’ reagent will be a critical step in differentiating between bacteria species. A pho‑
tograph captures the colorimetric response, and then the RGB values are extracted with an image analysis algorithm 
designed and presented here. Our results show clear chemical discrimination between five plant pathogenic bacteria 
after 3 h of incubation in the sensor; no misclassification was observed after this incubation time using hierarchical 
cluster analysis and linear discrimination analysis. In an experimental model, the sensor correctly classified Pseu-
domonas savastanoi pv. phaseolicola isolated from halo blight symptomatic leaves and distinguished between other 
fluorescent bacteria isolated from bean leaves. In addition, the image analysis algorithm presented here can improve 
RGB extraction due to removing interferences in the sensor substrate compared with the already reported RGB color 
extraction methods.
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Background
Plant pathogenic bacteria are one of the most devastating 
etiological agents of crops worldwide; bacterial diseases 
can cause symptoms in host plants like blights, fire blight, 
wilting, crown galls, soft rot, and oxidative stress (Naz-
arov et  al 2020; Ma et  al. 2022). Mansfield et  al. (2012) 
proposed a top 10 list of the most important plant patho-
genic bacteria from the scientific and economic impact 
point of view. This list included species like Pseudomonas 
syringae pathovares, Ralstonia solanacearum, Agrobac-
terium tumefanciens, different species of Xanthomonas, 
Erwinia amylovora, Xyllela fastidiosa, Dickeya, and Pec-
tobacterium carotovorum, with also special mention to 
Clavibacter michiganensis, Pseudomonas savastanoi, 
and Candidatus Liberibacter asiaticus. The traditional 
methods for diagnosing a bacterial disease include the 
observation of symptoms, microbiological tests, immu-
nological assays, and molecular methods like PCR (Ven-
brux et al. 2023). Recently, biosensors and chemosensors 
have been presented as an alternative for the detection of 
plant pathogens in a short time without high-cost instru-
ments (Cardoso et  al. 2022). Chemosensors consist of 
a chemical recognition element for sensing an analyte. 
This chemical recognition element can produce a detect-
able signal or can be combined with a physicochemical 
or electronic transducer to produce a measurable signal 
after the chemical reaction (Krämer et  al. 2022). If the 
chemosensor is combined with an optical and digital 
analysis, it is named an optoelectronic sensor (Bordbar 
et  al. 2020a, b). In chemosensors, some promising rec-
ognition elements are gold nanoparticles (AuNPs) due 
to their physicochemical properties depending on size, 
shape, and composition. It is well known that anisotropic 
nanoparticles can improve the sensitivity in sensing 
devices because of their high refraction index and refrac-
tion index sensitivity (Chen et  al. 2008; Tuersun et  al. 
2017). In this work, we present a chemosensor based on 
gold nanoparticles forming a chemical nose formed by 
seven “olfactory receptors” (seven AuNPs morphologies) 
for the classification of plant pathogenic bacteria. The 
sensor is coupled to an optoelectronic analysis through 
an image analysis algorithm to extract the RGB pattern 
for further chemometric classification analysis. Bacteria 
can produce volatile organic compounds (VOCs) dur-
ing the growth metabolism. The main VOCs are small-
chain organic acids, alcohols, ketones, and aldehydes. 
Recent reports have shown the fabrication of sensors for 
the detection of volatile aldehydes using gold nanoparti-
cles. Those sensors use the reduction power of the alde-
hyde on a chemical compound containing silver (Tollen´s 
reagent) for modifying the localized surface plasmon 
resonance (LSPR) on the AuNPs (sensor element), with 
a consequent silver deposition around the nanoparticle 

(Zhang et al. 2021). In this work, we use both principles 
to design a plasmonic nose containing AuNPs as a sen-
sor element embedded in a polymeric matrix in an alka-
line environment given by Tollens´ reagent to react with 
volatile aldehydes produced during bacterial metabolism. 
It is also known that alpha-hydroxy ketones can react 
with Tollen´s reagent because alpha-hydroxy ketones can 
tautomerize to aldehydes (Liao et  al. 2021). It has been 
reported that during the bacterial primary metabolism, 
some aldehydes can be produced by microorganisms 
such as 3-methylbutanal, butanal, mercaptopropanal, 
nonanal, and alpha-hydroxy ketones such as acetoin 
(Weisskopf et  al. 2021). These example molecules could 
be sensed by the plasmonic sensor presented here, and 
according to the concentration and production of a spe-
cific bacteria species, they will give a different chemical 
classification pattern.

Results
Gold nanoparticle synthesis
The Fig.  1a, b show the TEM micrographs of AuNPs 
used for sensor fabrication and the characteristic plas-
mon curves, respectively. The gold nanobones (GNB) of 
average size of 60 nm (Fig. 1a–i, b–i) show two plasmon 
peaks corresponding to longitudinal plasmon (700  nm), 
and transversal plasmon derived from edges in the broad 
and constricted part of the bone-like structure located 
between 500 and 600  nm. Gold nanospheres (GNSph) 
(Fig.  1a-ii, b-ii) of the average size of 30  nm exhibit a 
unique plasmon peak at 530 nm corresponding to the iso-
tropic morphology. Two nanorod sizes were synthesized 
with the average size in the longitudinal face of 50  nm 
(Fig.  1a-iii) and 62  nm (Fig.  1a-iv) with a longitudinal 
plasmon peak at 680 nm (Fig. 1b-iii) and 700 nm (Fig. 1b-
iv), respectively. These nanorod particles were used as 
seeds for synthesizing nano shuttles (GNSht) (Fig.  1a-v, 
vi) showing a modification in the intensity of the trans-
verse plasmon mode due to the widening of nanorod tips 
(Fig.  1b-v, vi). Finally, gold nanostars (GNStr) showed a 
dispersed size (Fig. 1a-vii), and the plasmon curves show 
a broad spectrum from 500 to 800  nm (Fig.  1b-vii) due 
to central spherical morphology and the presence of tips 
around it.

Sensor design and principle
Sensor fabrication is described in Fig.  2. The plasmonic 
nose is made up of seven “olfactory receptors”, each 
containing a single nanoparticle morphology: i GNB, ii 
GNSph, iii  GNR670, iv  GNR730, v  GNSht680, vi  GNSht700, 
vii GNStr (Fig.  2a). Each nanoparticle morphology was 
mixed with Tollens’ reagent ([Ag(NH3)2]OH) and then 
embedded in an agarose matrix and placed separately 
in an optical plastic cap of 200 µL microtube strips with 
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Fig. 1 Characterization of gold nanoparticles used in sensor fabrication. a TEM micrographs showing the different morphologies of AuNPs used 
in plasmonic nose fabrication. i gold nanobones GNB, ii gold nanospheres GNSph, iii gold nanorods longitudinal plasmon of 670 nm  GNR670, 
iv gold nanorods longitudinal plasmon of 730 nm  GNR730, v gold nanoshuttles longitudinal plasmon of 680 nm  GNSht680, vi gold nanoshuttles 
longitudinal plasmon of 700 nm  GNSht700, and vii gold nanostars GNStr. b Localized surface plasmon resonance (LSPR) spectrum of the seven 
AuNPs morphologies used in sensor fabrication

Fig. 2 Schematic representation of the plasmonic nose sensor design. a Sensor strip containing seven “olfactory receptors” with distinct 
nanoparticle morphology: i GNB, ii GNSph, iii  GNR670, iv  GNR730, v  GNSht680, vi  GNSht700, and vii GNStr. Each nanoparticle morphology is embedded 
in agarose and mixed with Tollens’ reagent, 2[Ag(NH3)2]OH. b During the detection test, a suspension of bacteria in King´s B culture media is loaded 
in the microtube, and then the sensor cap is placed in the tube. c During bacteria metabolism, if some volatile aldehydes and ketones are released 
to the headspace of the tube, these molecules will reduce the Tollens’ reagent, and metallic Ag will be deposited on the AuNP of the sensor, 
inducing a plasmon change that can be visualized in a color change of the sensor. d The color changes are analyzed with a MatLab algorithm 
designed in this work to obtain the ΔRGB for further chemometric analysis
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seven positions. To perform the detection test, 60 µL of 
bacterial suspension with  OD600 = 0.1 are dispensed in 
the tubes of the sensor strip. Then, the sensor cap strip 
containing the seven AuNP morphologies was placed in 
the tube strip. If the tested bacteria produce volatile alde-
hydes during their metabolism, the aldehydes released to 
the headspace of the tube will reduce the Tollens’ reagent, 
conducing to the silver reduction from  Ag+1 to  Ag0. Thus, 
the metallic silver will be deposited around the nanopar-
ticles (Fig.  2b) with a modification of the original plas-
mon of each AuNPs, resulting in a visible color change 
of the olfactory receptor with respect to the color before 
exposure to bacteria (Fig.  2c). It is expected that each 
bacteria produce different type or different concentration 
of aldehydes that allows a clear optical differentiation 
of each tested bacteria. In parallel to the test, as a con-
trol assay, a sensor strip containing only non-inoculated 
culture media is added to subtract the effect of culture 

media VOCs. After the incubation time, a picture of the 
sensor is captured with a digital camera, and the image is 
processed in a Matlab algorithm presented further ahead 
(Fig.  2d). The RGB values of each olfactory receptor in 
the control strip are subtracted from the resulting RGB 
value of the tested bacteria sensor strip, and the differen-
tial RGB (ΔRGB) is then used for chemometric analysis. 

Image analysis algorithm
Example results from the sample identification and 
RGB color extraction are shown in Fig.  3, also illustrat-
ing the different steps in the process. The example image 
(1824 × 1537 pixels) contains 42 samples of different 
colors, arranged in a grid of 6 × 7 samples. The aver-
age grey levels along the horizontal and vertical axes of 
the example image are shown in Fig. 3a, using a window 
size for the moving mean of 70 pixels. The resulting local 
maxima are indicated by the red markers in Fig. 3a and 

Fig. 3 The image analysis process for sample identification and color extraction applied to an example image. The subfigures on the left show 
the different main steps involved. a sample grid and midpoint identification, c sample extraction, and e sample image trimming. The subfigures b, 
d, and f show the results of each of these three main steps. g examples of extracted RGB color intensities. h the RGB intensity differences (ΔRGB) 
when using the bottom sample of each column as the reference for the rest of the column samples
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the resulting grid is shown in Fig. 3b. The resulting local 
minima are indicated by blue markers and lines in Fig. 3a, 
b, respectively.

Figure  3c shows the process of sample extraction in 
four steps for one of the individual sample images (row 
3, column 2 in the sample grid): (i) the Gaussian-filtered 
greyscale image, using a standard deviation of 20 pixels, 
(ii) the binary mask of the filtered image, using a thresh-
old factor of 0.95, and the location of the midpoint indi-
cated by a red marker, (iii) the final binary mask after 
intersection between the binary masks for the filtered 
and unfiltered images, and (iv) the extracted sample. Fig-
ure 3d shows the whole image after the same procedure 
has been applied to each individual sample image. As can 
be seen, the binary mask effectively removes the non-
sample parts of the image as well as the light reflections 
in the sample. Figure 3e shows the steps involved for the 
example image: (i) identification of the most circular 
sample (row 6, column 3 in the grid), with the centroid 
and the circle given by the equivalent diameter indicated 
in red, (ii) the same circle placed at the centroid of the 
sample from Fig. 3c, (iii) the circular mask superimposed 
in white on the sample, and (iv) the trimmed sample. 
Figure 3f, finally, shows the whole image after this proce-
dure has been applied to all samples. After the extraction 

of the samples in Fig.  3f, the average RGB color values 
of each sample are obtained (Fig.  3g), and then the dif-
ferences in RGB color intensity between the sample and 
culture media (control) located in the bottom row are 
calculated (ΔRGB). Figure  3h shows the resulting RGB 
colors and the RGB color differences for the example 
image.

Chemical response and classification of plant pathogenic 
bacteria
The plasmonic nose sensor could reliably discriminate 
the tested bacteria after two hours of incubation and 
onwards, according to an HCA analysis; however, before 
this time there was a notorious misclassification (Addi-
tional file  1: Figure S1). Figure  4a shows the plasmonic 
response of the nose sensor after incubation with five 
different phytopathogenic bacteria for 3 h. It is notorious 
that King’s B culture media also produced volatile com-
pounds modifying the original particle plasmon, which is 
why the RGB values of this control experiment were sub-
tracted from tested samples. In a visual evaluation, the 
most prominent differences are given by the most aniso-
tropic nanoparticles like gold nano bones, gold nanorods 
with longitudinal LSRP of 730  nm, gold nanoshut-
tles of both sizes, and gold nanostars. The anisotropic 

Fig. 4 Visualization of plasmon shift and ΔRGB pattern of the sensor after incubation with five different phytopathogenic bacteria. a Optical 
image of sensor strips after incubation with five different phytobacteria for 3 h. A sensor strip containing King’s B liquid culture media was included 
as a control. the RGB value of each “receptor” in the control strip is subtracted from its homologous “receptor” in the test strip (incubated 
with bacteria), and this differential RGB value is called ΔRGB. b ΔRGB pattern of the five tested phytobacteria obtained with the plasmonic nose 
after 3 h of incubation. The nanoparticle shape in the “olfactory receptor” is indicated at the top. hpi: hours post incubation
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nanoparticles have been reported to present a higher 
refraction index, enabling them to be more sensitive to 
the chemical environment and increasing the detection 
in sensor systems compared with isotropic particles such 
as spheres. Figure 4b shows the ΔRGB fingerprint of the 
sensor after 3 h of incubation (using images from Fig. 4a). 
A clear difference is observed for each bacterium, ena-
bling this sensor to classify bacteria species.

To clarify the optical differences, some classification 
methods were applied using the numerical values of 
ΔRGB. Firstly, an HCA was performed on the five tested 
bacteria at 3 and 4 h post incubation (hpi) (Fig. 5a, b). It 
is also noticeable that HCA analysis shows a similar clus-
tering of data at 3 and 4 hpi, and at this point, we con-
sider that a reliable discrimination can be reached after 
2  h of incubation (Additional file  1: Figure S1). At both 
tested times two main categories were obtained; in the 
first group Ralstonia solanacearum  LMG2299T and 
Xanthomonas phaseoli XHFR-02 were grouped at 3  h, 
but after 4 hpi, Pantonea aglomerans PaFr-22 was sub-
sequently added to this group, and the second group 
stands the presence of Pseudomonas savastanoi pv. pha-
seolicola PSFR-01 and Clavibacter michiganensis CLJI-
05. This may be explained by common volatile aldehydes 
and alpha-hydroxy ketones produced by both strains. The 

LDA classification method was also applied, showing that 
the sensor allows a clear separation of bacteria species 
groups (Fig.  5c, d). With both discrimination methods, 
we can conclude that the plasmonic-nose sensor can eas-
ily differentiate between bacteria species.

Plasmonic nose performance
To validate the performance of the designed sensor, 
Koch’s postulates were applied using P. savastanoi pv. 
phaseolicola PSFR-01 (Pp) in “Cacahuate” bean plants. 
The bean plants were infected with the Pp strain, and 
once the leaves showed symptoms of halo blight (necrotic 
spots surrounded by halo chlorosis, see Fig. 6a), the bac-
terium was reisolated and named Ppb, showing a similar 
colony morphology to Pp in King’s B agar. Also, a Pseu-
domonas sp. isolated from leaf blight in “Cacahuate” bean 
crop in field (Fig. 6d) was tested in the sensor (Plb). The 
reference strain (Ppb) and the field isolate (Plb) showed a 
hypersensitive response (HR) in tobacco leaves (Fig.  6b, 
c). The three tested bacteria showed fluorescent pigment 
under UV light typical of Pseudomonas (Fig.  6e). The 
three strains were then incubated in the sensor under the 
same conditions described above and the optical behav-
ior of LSPR in the sensor was monitored for 4 h to pro-
ceed with the optoelectronic analysis. As is shown in 

Fig. 5 Chemometric analysis of bacteria species classification. a, b Hierarchical cluster analysis (HCA) for differentiating five plant pathogenic 
bacteria species at 3 and 4 hpi. c, d Linear discrimination analysis (LDA) at 3 and 4 hpi. Experiments were performed in five replicates. Rs: Ralstonia 
solanacearum LMG2299.T, Xp: Xanthomonas phaseoli XHFR‑02, Pa: Pantoea aglomerans PaFr‑22, Pp: Pseudomonas savastanoi pv. phaseolicola PSFR‑01, 
Clm: Clavibacter michiganensis CLJI‑05
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Fig. 7a, at 1 h post incubation (hpi), the sensor classified 
Pp and Ppb in two closely related clusters and Plb showed 
a bigger Euclidean distance to the other two groups, no 
misclassification was observed using HCA methods at 1 
hpi. However, at 3 hpi both Pp and Ppb are classified in 
the same cluster without misclassification of Pp and Ppb 
in the cluster of Plb (Fig. 7b). One of the five sensor repli-
cates of Plb was misclassified in the group of Pp and Ppb 
(highlighted in green box). Using the HCA classification 
model at 3 hpi, we can observe a sensor accuracy of 93%. 
The LDA analysis (Fig. 7c, d) show that Pp and Ppb are 
closely related by both canonical variables 1 and 2, at 1 
and 3 hpi, being that the canonical variable 2 allows the 
best classification of Ppb in the Pp group. Meanwhile, Plb 
shows a significant separation in both canonical variables 
from the groups of Pp and Ppb, confirming the power of 
this plasmonic nose sensor to perform an accurate iden-
tification and classification of plant pathogenic bacteria, 
reaching an accuracy of 100% using LDA classification 
model. 

Discrimination between P. savastanoi pv. phaseolicola 
PSFR‑01 and saprophytic fluorescent and non‑fluorescent 
bacteria isolated from bean leaves
We observed the colony morphology of the reference 
strain P. savastanoi pv. phaseolicola PSFR-01 and two 
fluorescent and one non-fluorescent bacteria strains iso-
lated from bean leaves (Additional file 1: Figure S2). The 
isolates Col2, Col3, and the reference strain show differ-
ent fluorescence under UV light, but Col1 does not fluo-
resce; however, Col2 shows different colony morphology 
compared to the reference strain and other isolates. We 
performed an incubation of those fluorescent bacteria in 
the plasmonic-nose sensor in an incubation period of 4 h. 
The HCA of the three fluorescent bacteria and the refer-
ence strain showed that the dendrogram is divided into 
two main groups, the first group including P. savastanoi 
pv. phaseolicola PSFR-01 and Col3, and a second group 
including Col1 and Col2 (Additional file  1: Figure S3a). 
In the LDA test, the 2-D canonical plot shows clear dis-
crimination between isolated fluorescent colonies com-
pared to reference strains (Additional file 1: Figure S3b). 

Fig. 6 Infection model for sensor performance. a Halo blight symptoms in infected “cacahuate” bean plants with Pseudomonas savastanoi pv. 
phaseolicola PSFR‑01 (Pp) under greenhouse conditions. b, c HR response in tobacco leaves before and after infiltration with i sterile solution 
of 10 mM  MgCl2, ii Pseudomonas sp. isolated from leaf blight in bean plants in the field (Plb), iii P. savastanoi pv. phaseolicola PSFR‑01 re‑isolated 
from experimentally infected bean (Ppb), and iv P. savastanoi pv. phaseolicola PSFR‑01 reference strain. d Bean plant showing symptoms of leaf 
blight, the isolated Pseudomonas sp. was used for testing the sensor. e Colony morphology of three tested Pseudomonas, lower pictures were taken 
under UV light to show fluorescence
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No misclassification was observed for either method, 
confirming that the plasmonic-nose sensor described 
here shows a strong discrimination ability for saprophytic 
fluorescent and non-fluorescent bacterial isolates from 
symptomatic bean leaves.

Discussion
During bacteria metabolism, certain organic vola-
tile compounds (VOCs) are produced and released to 
the headspace, some of which belong to aldehydes and 
ketones. VOCs have previously been used for bacterial 
identification and classification using advanced instru-
mental techniques like gas chromatography (GS) and 
mass-spectrometry (MS), which offer reliable results and 
high sensitivity in detection and quantification. How-
ever, the access to this kind of instrumentation is not 
widespread enough for application in a routine diagno-
sis. New methods based on optical sensors could help to 
reduce costs for diagnostics and provide accessibility to 
quick and reliable bacteria identification based on VOCs.

In this study, we have proposed such a sensor, using 
the properties of gold nanoparticles. Localized surface 
plasmon resonance (LSPR) and the high refractive index 
that results from the morphology of the gold nanoparti-
cles allow the design and fabrication of a nanostructured 

optical sensor for the detection of different analytes by 
modifying the LSPR and coupling this detection to basic 
spectroscopic techniques such as UV–Vis and optoelec-
tronic analysis. According to the principle of our plas-
monic-nose sensor, aldehydes and alpha-hydroxy ketones 
can reduce the Tollens’ reagent presented in the reactive 
matrix of the sensor and produce metallic silver  (Ag0) 
that will be deposited around the nanoparticle, conse-
quently modifying the original LSPR of the sensor AuNP. 
When applying the sensor to different plant pathogenic 
bacteria, the behavior in LSPR differed depending on the 
type of aldehydes or alpha-hydroxy ketones produced by 
the tested bacteria and their redox potential and concen-
tration. Hence, an evident optical differentiation of the 
bacteria species tested here was observed.

This agrees with previous findings. For example, it has 
been reported that acetoin (classified as alpha-hydroxy 
ketone) is produced by Clavibacter michiganensis and 
Pantoea aglomerans (Davis et  al. 1984; Guevarra et  al. 
2021) whereas Xanthomonas is not able to produce this 
volatile (Soudi et  al. 2011). Acetoin is produced during 
the primary metabolism of bacteria derived from the 
glycolytic pathway, specifically derived from pyruvate. 
In our observations, in Fig. 5a, the bacteria genera Clavi-
bacter and Pantoea are clustered together in the first 3 h 

Fig. 7 Chemometric analysis for sensor validation. a, b HCA for classification of the three preparations of Pseudomonas. Pp: P. savastanoi pv. 
phaseolicola PSFR‑01; Ppb: P. savastanoi pv. phaseolicola PSFR‑01 re‑isolated from the experimental model; Plb: Pseudomonas sp. tested at 1 and 3 
hpi. c, d LDA analysis at 1 and 3 hpi
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of incubation, but Xanthomonas is clustered separately 
from these bacteria species in both discrimination meth-
ods. It is important to highlight that bacteria were tested 
in King’s B media, which contains glycerol as a carbon 
source and as an intermediate product of this primary 
metabolism that will produce pyruvate. On the other 
hand, according to the bacterial growth rate, the vola-
tile metabolites will be produced and released in differ-
ent concentrations in the tube headspace, modifying the 
reduction reaction rate in the sensor and helping to dif-
ferentiate between bacteria species.

The detection of formaldehyde using plasmonic sen-
sor arrays in liquid reaction media based on reduction of 
Tollens’ reagent has been reported previously. Duan et al. 
(2019) observed a blue shift in LSPR sensor nanoparticles 
(gold nanobones) depending on the formaldehyde con-
centration added to the sample. The TEM analysis and 
EDX elemental maps show that a layer of metallic silver 
is deposited around the sensor nanobones after alde-
hyde oxidation with Tollens’ reagent. In a similar work, 
Wang et  al. (2021) reported the use of gold nanorods 
for the quantification of volatile formaldehyde in indoor 
environments. Likewise, they observed that after the 
reduction of Tollens’ reagent by the formaldehyde, the 
silver is deposited around the gold nanorods, and the 
degree of silver deposition increases when the formalde-
hyde concentration grows, forming a core–shell Au@Ag 
nanoparticle.

Li et  al. (2020) reported the feasibility of a plasmonic 
sensor in discriminating aldehydes in a liquid environ-
ment. The sensor was fabricated with spherical gold 
nanoparticles of different sizes (40, 22, and 13  nm) in 
combination with Tollens’ reagent, and the LSPR shift 
was evidenced also as a colorimetric change in the sen-
sor was observed before and after the redox reaction 
between an aldehyde and Tollens’ reagent. This colori-
metric change was then analyzed using the ΔRGB data 
of each image, which was used for further chemometric 
analysis. It is important to note that the classification of 
aldehydes is based on their redox potential and chemical 
structure. Short-chain aldehydes show a rapid reactiv-
ity with Tollens’ reagent. Meanwhile, long carbon chain 
aldehydes like heptaldehyde have an oxidation rate that is 
slower compared with formaldehyde, acetaldehyde, and 
butyraldehyde, allowing clear chemical discrimination 
using the ΔRGB fingerprint.

In the optoelectronic analysis of color change response, 
similar approaches have been proposed previously but, 
as it seems, with less automated image analysis and for 
more regular and less noisy sample images. Zhang et al. 
(2014) calculated color difference maps for samples based 
on scanned colorimetric sensor arrays. However, it is not 
clear whether they used any particular image analysis 

method for automatically identifying and extracting the 
sample color values. Salles et  al. (2014) developed an 
iPhone app for determining RGB values of colorimet-
ric spot-tests on paper, which was used by Bueno et  al. 
(2015) to extract RGB values from photos of arrays of 
membranes with pH indicators. The exact function-
ality of the app is not provided, and it is not clear how 
much manual interaction was required by the user. An 
approach similar to our procedure for sample identifica-
tion was proposed by Bordbar et al. (2020a, b) for sam-
ples on paper; however, their method requires manual 
identification and extraction of each sample spot through 
a graphical user interface. In our method, the samples are 
automatically identified by the image analysis algorithm 
after a few general parameters are set. In the method of 
Bordbar et al (2020a, b), the average color values are cal-
culated based on the whole manually extracted sample 
shape, which is appropriate for scanned sample spots on 
paper; our method, however, is able to handle the noisier 
photographs of plastic tube racks, as the algorithm auto-
matically removes parts of the sample shapes that contain 
light reflection in the test tubes.

Additionally, in comparison with the work reported 
by Bordbar et  al. (2020a, b) the plasmonic-nose sensor 
presented here allows real-time monitoring without the 
need to remove the sensor substrate for data acquisition, 
as our sensor allows to take a direct photograph of the 
sensor substrate without disturbing the reaction process. 
In the chemometric analysis we showed a clear classifica-
tion of five plant pathogenic bacteria species using two 
classification methods, and a more accurate classifica-
tion was obtained after 3 h of incubation. This sensor can 
accelerate the correct identification of plant pathogenic 
bacteria in field samples coupled with traditional micro-
biological methods. As shown in Figs. 6 and 7, the sensor 
exhibited a high accuracy rate above 90% for correct clas-
sification of the P. savastanoi pv. phaseolicola re-isolated 
from leaves in an infection model of halo blight disease. 
In a previous report, Bordbar et  al. (2020a, b) designed 
a nanostructured chemical nose sensor fabricated for the 
detection of clinical infectious bacteria with an accuracy 
of 100% using HCA and PCA classification methods; in 
our work, HCA method presented a 93% of accuracy and 
using LDA it reached 100%. It is clear that our plasmonic 
sensor can differentiate between P. savastanoi pv. pha-
seolicola and other fluorescent and saprophytic bacteria 
found in bean leaves presenting leaf blight symptoms 
(Additional file 1: Figures. S2 and S3). The application of 
this sensor allows for quick and reliable diagnosis, reduc-
ing cost and time compared with the traditional molecu-
lar diagnostic of bacteria diseases. This is the first report 
showing the application of plasmonic nose chemosensor 
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for detection of plant pathogenic bacteria coupled with 
optoelectronic analysis.

Conclusion
In this study, we report a plasmonic nose chemosensor 
based on seven AuNPs morphologies and couple it to an 
image analysis algorithm for RGB extraction designed 
in our research group, with a view to plant health inno-
vation. The plasmonic sensor can be used for real-time 
discrimination between bacteria species using a chemi-
cal reaction coupled with photo-image analysis. The 
plasmonic sensor enables reliable discrimination of five 
phytopathogenic bacteria after 3 h of incubation at 30 °C, 
shows high accuracy classification of P. savastanoi pv. 
phaselicola isolated from a halo blight infection model 
in bean, and can discriminate from fluorescent and sap-
rophytic bacteria isolated in the field samples from the 
reference strain P. savastanoi pv. phaseolicola PSFR-01. 
Thus, this study provides a new approach to an effective, 
reliable, and rapid test that is useful for detecting patho-
genic microorganisms isolated from plant materials.

Methods
Chemicals and glassware treatment
Gold (III) chloride trihydrate  (HAuCl4, 99%), sodium 
borohydride  (NaBH4, ≥ 99%), hexadecyl trimethylammo-
nium bromide (CTAB)  (C19H42BrN, ≥ 99%), l-ascorbic 
acid  (C6H8O6, 99%), silver nitrate  (AgNO3, ≥ 99%), and 
agarose (Molecular biology grade) were purchased from 
Merck/Sigma-Aldrich (US). Tollens’ reagent (diamine-
silver hydroxide) [Ag(NH3)2]OH) was freshly prepared 
by a combination of 500  µL of  AgNO3 (0.5  M), 520  µL 
of  NH4OH (25%), 325 µL of NaOH (3 M) and then take 
the mix to 10  mL with deionized water. All glassware 
for gold nanoparticle synthesis and storage was washed 
with a basic mixture using the standard clean method no. 
1 of RCA company (TL1, RCA SC-1),  H2O:H2O2 30%: 
 NH4OH 25% (5:1:1) and heated to 80˚C for 10 min, then 
rinsed with ultrapure water ten times and dried.

Gold nanoparticle (AuNP) synthesis
Seeds nanoparticles Briefly, a seed nanoparticle solution 
was formed by mixing equal volumes of  HAuCl4 (0.5 mM) 
and CTAB (200 mM). After that, the solution was stirred 
for one minute, whereupon a suitable amount of freshly 
prepared ice-cold  NaBH4 was added to a final concentra-
tion of 0.6  mM, which was then stirred for one minute 
more. Finally, the solution was kept for two hours at room 
temperature without disturbance.

Gold nanospheres (GNSph) In 5 mL of CTAB solution 
(0.2 M), 200 µL of  HAuCl4 (25 mM), and 75 µL of ascorbic 
acid (80 mM) were added. Then, the pH was adjusted to 
pH 11 with NaOH (1 M); after that, 15 µL of seed nano-
particles were added to the growth solution and incubated 
at 37 °C for 18 h (Cheng et al. 2011).

Gold nanobones (GNB) Growth solution was prepared 
in 25 mL of CTAB (0.2 M) containing 1 mL of  HAuCl4 
(25 mM), then pH was adjusted to 7.0 using NaOH (1 M); 
after that, 600 µL of  AgNO3 (16 mM), 500 µL of ascor-
bic acid (80 mM), and 60 µL of seeds nanoparticles were 
added. The reaction mix was incubated at 37 °C for 18 h 
(Cheng et al. 2011).

Gold nanorods (GNR 670 and 730 nm) Gold nanorods 
were synthesized according to Wang et al. (2015). In brief, 
using a growth solution of 25 mL of CTAB (0.2 M) con-
taining 1 mL of  HAuCl4 (25 mM), the pH was adjusted to 
4.5 for the synthesis of 670 nm longitudinal LSPR rods, 
and for 730 nm LSRP rods, the pH was adjusted to 2.5, 
after that, 450 µL of  AgNO3 (16 mM) and 375 µL of ascor-
bic acid (80  mM) were added to growth solution, then 
60 µL of seeds nanoparticle solution was added and hand 
mixed for 30 s then incubated for 18 h at 28 °C.

Gold nanoshuttles (GNSht 680 and  700  nm) Gold 
nanorods with longitudinal LSPR of 670 and 630 nm were 
used as seeds for nanoshuttles synthesis. Briefly, nanoshut-
tles were synthesized according to Bai et al. (2014), 10 mL 
of rods seed particles suspended in CTAB (0.1 M) were 
added in 10 mL of glycine (0.2 M), then pH was adjusted 
to 8.5 using NaOH (2 N), then 80 µL of  HAuCl4 (25 mM) 
and 400 µL of  AgNO3 (10 mM) were added. The mix was 
incubated for 5 min at 25 °C in a water bath, and 400 µL 
of ascorbic acid (100  mM) was immediately added and 
mixed for 30 s by shaking inside the water bath. The reac-
tion mix was incubated for one hour at 25 °C in the water 
bath.

Gold nanostars (GNStr) Nanostars were synthesized 
according to the previous report (Sau et  al. 2011). In 
10  mL of CTAB (0.2  M), 320  µL of  HAuCl4 (25  mM) 
was added; then, 120 µL of ascorbic acid (100 mM) and 
376 µL of  AgNO3 (16 mM) were added, and the volume 
was adjusted to 20 mL using deionized water. The growth 
solution was mixed for one minute and then incubated for 
18 h at 28 °C.

Characterization of gold nanoparticles
The solutions of gold nanoparticles were characterized 
by recording a visible spectrum from 400 to 850 nm in a 
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spectrophotometer to acquire the LSPR curve. For trans-
mission electron microscopy (TEM) visualization, the 
gold nanoparticles were washed three times by centrifu-
gation (8160  g, 10  min) and resuspended in deionized 
water. The nanoparticle solution was diluted properly, 
and then an aliquot was deposited on a copper grid; the 
micrographs were acquired in a JEOL TEM JEM2010 
FEG.

Plasmonic nose sensor fabrication and set‑up
The plasmonic-nose sensor is designed to contain seven 
“olfactory receptors” corresponding to the seven AuNPs 
morphologies described previously and illustrated in 
Fig. 1. The sensor prototype was fabricated using a 200 µL 
microtube strip (8 tubes per strip) with domed transpar-
ent caps (Axygen). The cap of the tubes was the base for 
the plasmonic sensor, and the tube contained the tested 
bacteria (Fig. 2). The sensor matrix was formed by a mix 
of ultrapure agarose 0.5% mixed with Tollens’ reagent in 
a final concentration of 87.5 µM, then 32 µL of this solu-
tion was mixed with 28  µL of gold nanoparticles (with-
out any dilution after synthesis, with only an extra step of 
washing twice and resuspended in deionized water). This 
mix was placed in the inside part of the domed cap of the 
tube and was allowed to gel at room temperature (a cap 
in the strip for each AuNP morphology, Fig. 2). The opti-
mal concentration of agarose, Tollen’s reagent, and gold 
nanoparticles in the mix was standardized previously. 
Tube and cap stripes were previously sterilized at 121 °C, 
15 pounds/inches2 for 15  min. Sensor fabrication was 
prepared under sterile conditions in a laminar flow hood.

Sensor operation
The sensor tubes were filled with 60 µL of tested bacte-
ria suspension or uninoculated culture media. Once the 
cap lid containing the sensor was closed, the sensor strips 
were incubated at 30 °C with a strip containing only cul-
ture media and a sensor strip without culture media or 
bacteria. Then, the sensor was removed from the incuba-
tor chamber, and a photograph of the sensor was taken 
under “cold” white LED light. The working distance 
between the camera and sensor strips was 45  cm, and 
photographs were taken using a Nikon DX-VR camera. 
The photographs were used for the RGB extraction pro-
cess using our designed algorithm described above.

The following plant pathogenic bacteria were used to 
test the sensor: Ralstonia solanacearum  LMG2299T, 
Clavibacter michiganensis CLJI-05, Pantoea aglom-
erans PaFr-22, Xanthomonas phaseoli XHFR-02, and 
Pseudomonas savastanoi pv phaseolicola PSFR-01. The 
bacteria species belong to the Plant Pathology Lab of 
Chávez-Ramírez B and were isolated from field samples 
and characterized by molecular techniques. Bacteria 

were grown in solid King´s B culture media and incu-
bated at 28  °C for 3–5  days. For sensor experiments, a 
bacteria suspension was prepared in liquid King´s B cul-
ture media and then adjusted to an optical density of 0.1 
at 600  nm, then 60  µL of bacteria suspension was dis-
pensed in the tube strips, and the sensor strip cap was 
placed and closed carefully avoiding the bacteria suspen-
sion splash in the sensor nose.

Validation of sensor performance
To validate the power of the plasmonic nose sensor for 
the accurate detection and classification of plant patho-
genic bacteria, an infection model of halo blight disease 
was carried out with the reference strain Pseudomonas 
savastanoi pv. phaseolicola PSFR-01 (Pp). First, a bacte-
ria suspension of Pp (1 ×  109 CFU/ mL) was aspersed on 
the leaves of two-week-old “Cacahuate” bean plants until 
runoff. The plants were incubated in a greenhouse with 
a 100% moisture environment condition until symptoms 
of halo blight were showing. A sample of symptomatic 
leaves was collected and rinsed with tap water, then sani-
tized with sodium hypochlorite 1% for 3 min, rinsed with 
sterile distilled water, and then ground in a sterile mortar; 
an aliquot was streaked in King’s B solid culture media, 
and the fluorescent colonies were re-cultured in a King’s 
B culture media for purification, the reisolated bacterium 
was named (Ppb).

The reference strain Pp, reisolated Ppb, and a Pseu-
domonas sp. (Plb) isolated from leaf blight lesions in a 
crop of “Cacahuate” bean, were infiltrated in tobacco 
leaves to show the HR response. Finally, the three differ-
ent preparations of Pseudomonas (Pp, Ppb, and Plb) were 
incubated in the nose sensor in the conditions described 
above and were monitored for 3 h.

For experiments of discrimination of fluorescent bac-
teria, three fluorescent and saprophytic bacterial strains, 
Col1, Col2, and Col3, were isolated from bean leaves. To 
test if the sensor can differentiate the fluorescent and 
saprophytic bacteria from the reference plant pathogenic 
strain P. savastanoi pv. phaseolicola PSFR-01, the sensor 
was incubated with the three colonies and the reference 
bacteria under the conditions described above.

Optoelectronic algorithm for image analysis and RGB 
extraction
RGB extraction was performed on the photographs using 
the following algorithm implemented in Matlab. Each 
step in the algorithm is shown for an example image in 
Fig. 3. In the first step of the algorithm, a grid of vertical 
and horizontal lines is identified in the image and divided 
into smaller images, which are further processed. Grid 
lines between rows and columns of samples are identi-
fied by first converting the image to greyscale and then 
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calculating the average grey levels of pixels (a value from 
0 to 255) of each row and column. As the colored samples 
generally have a lower value (i.e., are darker) than the area 
between the samples, the grid lines are drawn where the 
highest average row and column values are found. The 
moving mean of the grey level is calculated before max-
ima are identified to remove noise. The window length 
(number of pixels) for the moving mean is a parameter 
that has to be set depending on the image resolution and 
individual sample size. All local maxima are identified 
using the Matlab function islocalmax. To avoid identi-
fying several local maxima and drawing more than one 
grid line between samples due to slight variations in the 
grey levels even after taking the moving mean, the promi-
nence of each maximum is determined, and only the 
maxima with a prominence above a pre-defined thresh-
old are kept. The prominence is defined as the difference 
between the local maximum and whichever minimum 
between the peak and the nearest higher peak to the left 
or right is the highest. For the example image, a promi-
nence threshold of 1 on the grey level scale is sufficient to 
remove extra lines between samples. To identify the mid-
points of the samples, a corresponding procedure is car-
ried out, but for local minima instead, using the Matlab 
function islocalmin. The next step is to cut out the parts 
of each sample image that belong to the colored sample 
itself and remove the rest, including light reflections in 
the sample. For this purpose, a binary mask is created 
from the greyscale image, where all pixels with a grey 
level below a certain threshold (i.e., darker, belonging to 
the sample) are set to 1, and all pixels above the thresh-
old are set to 0. The threshold is, by default, taken as the 
mean grey level over the sample image but is multiplied 
by a factor that can be set to slightly below or above 1 
for fine-tuning the mask. The reason for performing this 
step individually for each sample is that the binary mask 
threshold is adapted to the average grey level of each 
sample image, which gives better results than applying 
the same threshold to the whole image.

In case the difference in grey levels between the sample 
and its vicinity is not very high, the mask risks becom-
ing noisy and may contain parts that belong to the actual 
sample and parts that do not. For this reason, a Gaussian 
filter is first applied for noise reduction. The Matlab func-
tion imgaussfilt is used, for which the filter’s standard 
deviation (number of pixels) has to be chosen depending 
on the sample size in pixels. The sample part of the binary 
mask is then identified as the 4-connected component 
(identified using bwlabel) containing the midpoint of 
the sample identified in the previous step. The intersec-
tion between the sample part of the noise-reduced binary 
mask and the binary mask of the unfiltered image gives 
the final binary mask for sample identification. After this 

step, some of the extracted samples may still contain 
parts that do not belong to the sample, which may be due 
to shadow effects, samples not photographed perfectly 
from above, or a low difference in grey value between the 
sample and its surroundings. Therefore, as a final step, 
the extracted samples are trimmed by creating a circular 
binary mask from the most well-identified sample and 
applying this to the rest of the samples. The circularity 
(equal to 1 for a perfect circle and below 1 for non-circu-
lar shapes) of each binary mask is determined using the 
Matlab function regionprops, and the sample with the 
highest circularity is chosen. The equivalent diameter of 
this sample shape, given by regionprops, is then taken as 
the diameter of the circular mask. The centroid of each 
sample binary mask from the previous step is determined 
by applying regionprops to each sample, and the circu-
lar binary mask is placed with its center at each sample 
centroid. Only the parts of the sample within the circular 
binary mask are kept.

Additional steps need to be taken in case there are 
no samples in all grid positions. The reason is that even 
if there is no sample, there will still be an image that is 
processed as above, and as there is no a priori informa-
tion on whether cells contain samples or not, non-sample 
shapes may be identified and extracted as samples. How-
ever, these are usually small and/or non-circular. There-
fore, a size threshold is defined to avoid small but circular 
shapes being chosen as the representative sample for the 
circular mask above, and a threshold value is defined for 
the relative difference between the circular mask and the 
shapes to which it is applied. Shapes that are too differ-
ent from the representative sample are removed. In the 
example image, these thresholds were not critical, as 
there is a full grid of samples, but for other images with 
similar sample sizes in pixels, a suitable size thresh-
old was found to be 20 pixels, and a suitable difference 
threshold was 0.5. The Additional file 2: Table S1 lists the 
parameters that need to be set as well as their values for 
the example image in Fig. 3.

After the extraction of the samples in Fig. 3f, the aver-
age RGB color values of each sample are obtained as

where Ni is the number of extracted pixels for sample i, 
and cij is the RGB color vector for pixel j in sample image 
i. The RGB color vectors are on the form

where rij , gij , and bij are the individual red, green, and 
blue color intensity values (0 to 255) for pixel j in sample 

(1)ci =
1

Ni

Ni
∑

j=1

cij ,

(2)cij =
(

rij , gij , bij
)

,
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image i. The differences in RGB color intensity (ΔRGB 
values) between a sample i and a reference sample are 
obtained as

The presented algorithm is enlisted as a link in Addi-
tional file 3.

Chemometric analysis
The ΔRGB values extracted with the previously 
described algorithm were used for multivariant dis-
criminant analysis. These analyses are based on 27 
vectors representing a bacterial species (7 olfactory 
receptors and RGB values). The Hierarchical Cluster 
Analysis (HCA) used a “Ward” cluster method, and 
Linear Discriminant Analysis (LDA) was carried out 
in Origin(Pro), Version 2021 (OriginLab Corporation, 
Northampton, MA, USA). The experiment was con-
ducted in five or six replicates per triplicate.

Abbreviations
AuNPs  Gold nanoparticles
LSPR  Localized surface plasmon resonance
HCA  Hierarchical cluster analysis
LDA  Linear discriminant analysis
TEM  Transmission electron microscopy
g  G force
nm  Nanometers
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